Discrete Kansrekening/Symmetrische kansruimten/Inleiding

Uit Wikibooks
Naar navigatie springen Naar zoeken springen

Discrete Kansrekening

0. Inleiding
   1. Algemene opmerkingen
   2. Geschiedenis
   3. Literatuur
1. Basisbegrippen
   1. Experiment en uitkomstenruimte
   2. Intuïtief kansbegrip
   3. Kans
   4. Eigenschappen van kansen
   5. Vraagstukken
2. Symmetrische kansruimten
   1. Inleiding
   2. Combinatorische kansrekening
   3. Vraagstukken
3. Voorwaardelijke kans en onafhankelijkheid
   1. Voorwaardelijke kans
   2. Onafhankelijke gebeurtenissen
   3. Samengestelde experimenten
   4. Vraagstukken
4. Stochastische variabelen
   1. Inleiding
   2. Kansverdeling
   3. Enkele bekende discrete verdelingen
   4. Vraagstukken
5. Simultane kansverdelingen
   1. Inleiding
   2. Voorwaardelijke kansverdelingen
   3. Onderling onafhankelijke stochastische variabelen
   4. Functies van stochastische variabelen
   5. Gelijkverdeelde stochastische variabelen
   6. Vraagstukken
6. Verwachtingswaarde
   1. Inleiding
   2. Verwachting van bekende discrete verdelingen
   3. Verwachting van functies van stochastische variabelen
   4. Eigenschappen van verwachtingswaarde
   5. Voorwaardelijke verwachtingswaarde
   6. Vraagstukken
7. Momenten
   1. Inleiding
   2. Variantie en standaardafwijking
   3. Variantie van bekende discrete verdelingen
   4. Covariantie en correlatie
   5. De ongelijkheid van Chebyshev
   6. De zwakke wet van de grote aantallen
   7. Vraagstukken
8. Tabellen
   1. Binomiale verdeling
   2. Poisson-verdeling
9. Register

2.1 Inleiding

In het voorgaande hoofdstuk hebben we al gesproken over symmetrie, dwz. over situaties waarin alle uitkomsten gelijke kans hebben. Als voorbeeld zijn we het werpen van een zuivere munt of zuivere dobbelsteen tegengekomen. Symmetrie komen we vaker tegen, zoals in de belangrijke gevallen van het lukraak trekken van knikkers (loten) uit een vaas. Uiteraard kunnen er in het geval van symmetrie maar eindig veel uitkomsten zijn.

Definitie 2.1.1

Een kansruimte (S,p) noemen we symmetrisch als S eindig is en iedere uitkomst s ∈ S gelijke kans heeft.


Aangezien we in dit hoofdstuk veel over het aantal uitkomsten in een gebeurtenis zullen spreken, voeren we een aparte notatie in voor het aantal elementen van een verzameling

Definitie 2.1.2

Het aantal elementen van een verzameling A geven we aan door #A.


Omdat de som van alle kansen op uitkomsten in een uitkomstenruimte gelijk is aan 1, heeft elke uitkomst s in een symmetrische kansruimte een kans p(s) = 1/#S.

Stelling 2.1.1

In een symmetrische kansruimte (S,p) wordt de kansfunctie p gegeven door:

,

voor alle s ∈ S.


De kans P(A) op een gebeurtenis A is in een symmetrische kansruimte juist de kans volgens de definitie van Laplace. We kunnen de kans op A bepalen door te tellen hoeveel uitkomsten tot A behoren (gunstig zijn voor A) en dat aantal te delen door het totale aantal mogelijke uitkomsten.

Stelling 2.1.2 (kansdefinitie van Laplace)

In een symmetrische kansruimte wordt de kans op een gebeurtenis A gegeven door

Bewijs:


We bespreken nu enkele voorbeelden van symmetrische kansruimten.

Voorbeeld 1 (twee worpen met een dobbelsteen; vervolg)

De uitkomstenruimte S bestaat uit de 36 paren (s1,s2), met si= 1,2,...,6. Omdat de dobbelsteen zuiver is en we er lukraak mee gooien, zullen alle 36 uitkomsten dezelfde kans hebben. Dit experiment beschrijven we dus met een symmetrische kansruimte; dwz. de kansfunctie p is eenvoudigweg voor alle 36 uitkomsten gelijk en wel: p(s1,s2) = 1/36. Wat is de kans dat het totaal aantal geworpen ogen gelijk is aan 4? Die gebeurtenis noemden we A, dus P(A) = #A/#S = 3/36, want 3 van de 36 uitkomsten zijn gunstig voor A.

Voorbeeld 2

Op de school van voorbeeld 7 uit par. 1.1 wordt willekeurig één leerling gekozen uit het totaal van 1000 leerlingen. Dat we willekeurig kiezen, betekent dat elke leerling dezelfde kans heeft om gekozen te worden; die kans is dus 1/1000. We hebben te maken met een symmetrische kansruimte. De gebeurtenis dat deze leerling een meisje is, duiden we aan met M; dan is P(M) = 600/1000 = 0,6.

Voorbeeld 3

Uit een spel van 52 kaarten trekken we lukraak één kaart. Er is weer symmetrie. We berekenen bv.:

P("ruiten") = aantal ruiten / totaal aantal = 13/52 = 1/4,
P("aas") = 4/52 = 1/13

en

P("ruiten" of "aas") = 16/52 = 4/13.

De laatste kans kunnen we ook berekenen met de algemene somregel, dan is:

P("ruiten" of "aas") = P("ruiten") + P("aas") - P("ruitenaas") = 13/52 + 4/52 - 1/52 = 16/52.


Voor we beslissen dat er bij een experiment sprake is van symmetrie, dienen we ons er terdege van te overtuigen dat het experiment zo is ingericht dat inderdaad alle uitkomsten even waarschijnlijk zijn. Het volgende historische voorbeeld laat zien hoe hier gemakkelijk fouten kunnen ontstaan.

Voorbeeld 4

We werpen tegelijk twee munten. De uitkomsten kunnen we voorstellen door 2×kruis, 1×kruis en 0×kruis. D'Alembert (1717-1783) stelde ten onrechte dat de bijbehorende kansruimte symmetrisch is.

Heckert GNU.png Deze pagina is vrijgegeven onder de GNU Free Documentation License (GFDL) en nog niet onder CC-BY-SA. Klik hier voor meer informatie.



Informatie afkomstig van http://nl.wikibooks.org Wikibooks NL.
Wikibooks NL is onderdeel van de wikimediafoundation.