Naar inhoud springen

Geo-visualisatie/Inleiding GIS: verschil tussen versies

Uit Wikibooks
Verwijderde inhoud Toegevoegde inhoud
Nijeholt (overleg | bijdragen)
kGeen bewerkingssamenvatting
Nijeholt (overleg | bijdragen)
kGeen bewerkingssamenvatting
Regel 216: Regel 216:
# '''Compleetheid.''' Waar de ene toepassing genoeg heeft aan 'de belangrijkste objecten' zal een ander ze toch echt allemaal moeten hebben. Stel iemand heeft bijvoorbeeld een bestand met zo ongeveer alle belangrijkste overwegen om een beeld te krijgen van waar die het meeste voorkomen. Dat kan dan afdoende zijn. Echter dit is beslist onvoldoende voor een beheerder van de railinfrastructuur of een gemeente. Die moeten respectievelijk de veiligheid en mogelijke verbindingsroutes voor wandelaars kennen.
# '''Compleetheid.''' Waar de ene toepassing genoeg heeft aan 'de belangrijkste objecten' zal een ander ze toch echt allemaal moeten hebben. Stel iemand heeft bijvoorbeeld een bestand met zo ongeveer alle belangrijkste overwegen om een beeld te krijgen van waar die het meeste voorkomen. Dat kan dan afdoende zijn. Echter dit is beslist onvoldoende voor een beheerder van de railinfrastructuur of een gemeente. Die moeten respectievelijk de veiligheid en mogelijke verbindingsroutes voor wandelaars kennen.


De genoemde beperkingen worden bij het gebruik van geo-informatie soms geconstateerd en als fout gekwalificeerd. (Hé dat die monumentale boom volgens dataset/kaart x ligt om het verkeerde perceel uit dataset/kaart y). Wanneer jij bovenstaande beperkingen kent, weet je welke kaartlagen wel of niet mogen worden gecombineerd, welke conclusies mogen worden getrokken en - eventueel - welke waarschuwingen je de gebruiker mee moet geven met de kaart. In Deel B en C zullen aan deze beperkingen cartografische principes worden verbonden. Zoals - in het geval van de boom - met welke schaal en dikte je bepaalde symbolen moet weergeven. En in hoeveel verschillende klassen classificeer je de bevolkingsdichtheid van 12 provincies of honderden gemeenten?
: De genoemde beperkingen worden bij het gebruik van geo-informatie soms geconstateerd en als fout gekwalificeerd. (Hé, het klopt niet dat die monumentale boom volgens dataset/kaart BOOMLOCATIES ligt die en die plek, want het valt volgens dataset/kaart KADASTRALE_KAART op het verkeerde perceel).
: Nog een leuke uitspraak (Bron: Wikipedia 2007 [http://nl.wikipedia.org/wiki/Misbruik_van_statistische_gegevens], auteur onbekend):
:*''"Er is al een statisticus verdronken in een meer dat gemiddeld een halve meter diep was."''
: Wanneer dit een cartograaf was, was deze zeker niet goed gekwalificeerd!
Wanneer jij bovenstaande beperkingen kent, weet je welke kaartlagen wel of niet mogen worden gecombineerd, welke conclusies mogen worden getrokken en - eventueel - welke waarschuwingen je de gebruiker mee moet geven met de kaart. In Deel B en C zullen aan deze beperkingen cartografische principes worden verbonden. Zoals - in het geval van de boom - met welke schaal en dikte je bepaalde symbolen moet weergeven. En in hoeveel verschillende klassen classificeer je de bevolkingsdichtheid van 12 provincies of honderden gemeenten?


<div style="background:#FFDAB9;">
<div style="background:#FFDAB9;">
Regel 427: Regel 433:


====De macht van het kleine getal====
====De macht van het kleine getal====
Bij het trekken van conclusies op basis van kaarten geldt hetzelfde als bij het trekken van conclusies op basis van andere media. Er moet voorzichtig worden omgesprongen bij onvolledige of niet juist ingewonnen data. Zeker wanneer een kaart gemaakt wordt op basis van een beperkt onderzoek, of een beperkte hoeveelheid data (zie ook de vorige paragraaf). Staat er een beperkte selectie van de werkelijkheid op een kaart, of er zijn nu eenmaal weinig voorvallen gekarteerd, dan is er de kans dat de beslissing of het inzicht die volgt uit een kaart, bepaald wordt door wat men noemt 'de macht van het kleine getal' of 'overhaaste generalisatie' (zie ook [[http://nl.wikipedia.org/wiki/Wet_van_de_kleine_getallen De macht van het kleine getal]].
Bij het trekken van conclusies op basis van kaarten geldt hetzelfde als bij het trekken van conclusies op basis van andere media. Er moet voorzichtig worden omgesprongen bij onvolledige of niet juist ingewonnen data. Zeker wanneer een kaart gemaakt wordt op basis van een beperkt onderzoek, of een beperkte hoeveelheid data (zie ook de vorige paragraaf). Staat er een beperkte selectie van de werkelijkheid op een kaart, of er zijn nu eenmaal weinig voorvallen gekarteerd, dan is er de kans dat de beslissing of het inzicht die volgt uit een kaart, bepaald wordt door wat men noemt 'de macht van het kleine getal' of 'overhaaste generalisatie' (zie ook [[http://nl.wikipedia.org/wiki/Wet_van_de_kleine_getallen De macht van het kleine getal]]).
===Ruimtelijke gegevensmodellering (facultatief)===
===Ruimtelijke gegevensmodellering (facultatief)===

Versie van 20 okt 2007 15:12

HANDBOEK GEO-VISUALISATIE
Kaarten maken met een GIS
Deel A: Theorie / Inleiding GIS
Deze module is onderdeel van een Wikibook dat zich nog in de schrijffase bevindt. Op de startpagina staat de status van deze module en wanneer deze gereed is. 'Meewerkers / meedenkers', een cartograaf of GIS-specalist en een neerlandicus met affiniteit hiervoor zijn nog steeds welkom, ook reacties zijn gewenst.

Deze module, onderdeel van Deel A: Theorie, behandelt de meest essentiële GIS-theorie, nodig voor het kunnen begrijpen van GIS-software en voor het kunnen maken van cartografische producten met een GIS. Facultatieve hoofdstukken zijn aangegeven met de toevoeging '(facultatief)'.

Modules Handboek Geo-visualisatie:
Startpagina Handboek Geo-visualisatie Zeer goed ontwikkeld. Revisiedatum: 19 januari 2008
Inleiding Zeer goed ontwikkeld. Revisiedatum: 18 februari 2008

Deel A: Theorie Zeer goed ontwikkeld. Revisiedatum: 6 februari 2008
Inleiding GIS Zeer goed ontwikkeld. Revisiedatum: 10 april 2008
Vervolg GIS Zeer goed ontwikkeld. Revisiedatum: 10 februari 2008
Inleiding Cartografie Zeer goed ontwikkeld. Revisiedatum: 13 februari 2008
Vervolg Cartografie Zeer goed ontwikkeld. Revisiedatum: 6 februari 2008
Communicatie Zeer goed ontwikkeld. Revisiedatum: 6 februari 2008
Deel B: Geo-visualisatie Zeer goed ontwikkeld. Revisiedatum: 6 februari 2008
Classificatie Zeer goed ontwikkeld. Revisiedatum: 18 februari 2008
Symbologie Zeer goed ontwikkeld. Revisiedatum: 10 april 2008
Deel C: Kaartopmaak Zeer goed ontwikkeld. Revisiedatum: 10 april 2008
Labels Zeer goed ontwikkeld. Revisiedatum: 10 april 2008
Oplevering van de kaart Zeer goed ontwikkeld. Revisiedatum: 10 april 2008

Vragen en opdrachten Zeer goed ontwikkeld. Revisiedatum: 10 april 2008
Woordenlijst Zeer goed ontwikkeld. Revisiedatum: 10 april 2008
Overige informatie en links Zeer goed ontwikkeld. Revisiedatum: 10 april 2008

Wat is GIS?

Een voorbeeld van een GIS-model, hier afgebeeld als een serie op elkaar gestapelde lagen informatie. Elke locatie (met een X- en Y-coördinaat) kan zo met meerdere kenmerken (Z-waarden) beschreven worden.

Omdat hier GIS niet het onderwerp is, maar de toepassing ervan, slechts kort een definitie van GIS. GIS betekent Geografisch Informatie Systeem. GIS is een techniek waarbij ruimtelijke gegevens kunnen worden gegenereerd, gevisualiseerd, bewerkt en geanalyseerd. In een GIS kunnen diverse (informatie)lagen over elkaar worden gelegd.

De visualisatie van een GIS gebeurt meestal in kaartvorm. Zo ontstaan ruimtelijke relaties tussen de verschillende informatielagen, relaties die zonder locatiecomponent niet gemaakt konden worden en die zonder gebruik van een GIS dus verborgen zouden blijven.

Daarnaast kunnen met een GIS ruimtelijke analyses worden uitgevoerd met die lagen. Een hoogtekaart kan om worden gerekend naar een hellingpercentagekaart. Vijf kaarten bij elkaar - locaties van supermarkten, wegen, aantal inwoners, gemiddeld inkomen per adres of wijk en de grondprijs - kunnen omgerekend worden naar een geschiktheidskaart voor de beste plekken voor een nieuwe supermarkt.

In plaats van dat GIS als 'techniek' wordt gedefinieerd, wordt GIS ook vaak gebruikt voor een afdeling van een bedrijf, of een proces, inclusief "data-, hard-, soft-, org- en humanware". GIS wordt ook wel eens als synoniem gebruikt voor de complete geo-informatie voorziening. Daar valt dan ook onder de inwinning (het beheer) van geo-informatie en de ontsluiting met behulp van zogenaamde viewers aan werknemers of klanten.

GIS-software maakt per definitie gebruik van een geo-informatie, en als het goed is, is die geo-informatie samenhangend ingebed in een GIS-model.

Wat kan met een GIS?

Hoe data-lagen in een GIS zichtbaar zijn en 'gestapeld' worden weergegeven; twee voorbeelden uit de gemeente.

De belangrijkste soorten toepassingsmogelijkheden van GIS-software zijn:

  1. visualisatie van informatie die op een locatie betrekking heeft. Dit is de bekendste bijdrage van GIS.
  2. analyses waarbij selecties worden bepaald op basis van nabijheid, overlap of mogelijke verbindingen via een (wegen)netwerk berekend wordt.
  3. berekeningen waarbij - geheel geautomatiseerd - aan objecten afstanden, gebiedsbeschrijvingen worden toegekend, op basis van nabijheid of overlap met andere gebieden. Dit is te zien als verrijking van informatie, en maakt het beheer vaak veel efficiënter.
  4. beheer van geo-informatie. Dat wil zeggen, de totstandkoming van geo-informatie en wijzigingen daarna verwerken.
  5. planning en voorspelling. Bouwprojecten kunnen begeleid worden. Door kaarten van bodem, klimaat, helling, grondgebruik te combineren kan erosie voorspeld worden, en op basis van sociaal-economische thema's kunnen gunstigste locaties voor bedrijven, wegen, stations en natuurgebieden bepaald worden.

Met een aantal voorbeelden uit de gemeentelijke wereld wordt dit hieronder verder duidelijk gemaakt. Dit gebeurt zonder hierbij de indruk te willen wekken een volledige opsomming van alle mogelijkheden van een GIS te noemen. Wel zal de kracht en verscheidenheid van GIS in zijn volledige breedte duidelijk worden. Het voorbeeld komt uit de beheertaken van de gemeente, die verantwoordelijk is voor het beheer van de openbare ruimte, zoals lantaarnpalen, de ondergrondse leidingen, en communicatie met de rechthebbenden van de percelen.

Hoe een kaart met één wijziging van de legenda kan wijzigen. De data-laag 'ondergrondse leidingen' is bij kaart A gevisualiseerd op soort, en bij kaart B gevisualiseerd op vervangingsjaar. Bij kaart C zijn de kaartlagen in de verkeerde volgorde gevisualiseerd. Vlakken dienen in het algemeen als eerste ('onderaan') getekend te worden.

Ad Visualisatie:

  • In de figuur hierboven is te zien van hoe data-lagen in een GIS of GIS-model opgenomen zijn. Tezamen vormen ze een kaart. De informatie (lees: objecten) uit de datalagen wordt op het scherm getekend in een bepaalde volgorde; van onder naar boven.
  • Bij kaart A kan de gemeente zien welke leidingsoort waar ligt en in welke straten lantaarns zijn.
  • Bij kaart B is - dankzij een legendawijziging waarbij de data zelf niet wijzigt - te zien welke leidingen wanneer vervangen dienen te worden. De kleur staat plotseling niet meer voor een leidingsoort, maar voor een jaartal. De onderste kaartlaag - in dit voorbeeld bij kaart A en B: 'percelen' - wordt dus het eerst getekend. Datalagen met vlakken, zoals percelen, staan daarom vrijwel zonder uitzondering onderaan, lijnen daar boven en data-lagen met punten staan daar weer boven. Anders zouden de datalagen (vaak thema's of - foutief- kaartlagen genoemd) met vlakken de symbolen bedekken en onzichtbaar maken.
  • Dit laatste is te zien in kaart C. Leuk detail: merk op dat in het GIS-model de ondergrondse leidingen 'boven' de percelen liggen... Zonder deze 'truc' - lees: zonder de werkelijkheid 'geweld aan te doen' - zouden ondergrondse leidingen nooit gevisualiseerd kunnen worden.
Vier toepassingsvoorbeelden van GIS. D = Welke percelen hebben last leidingen die in 2008 worden vervangen?; E = Welke leidingen liggen onder een bepaald perceel?; F = Bepaal de wijknummers voor alle percelen. F = Welke percelen liggen binnen 50 meter van een lantaarnpaal?

Ad Analyses:

  • Kaart D: Wanneer een leiding vervangen moet worden, is het handig - voor het op de hoogte stellen van de betrokken bewoners - om te weten welke perelen hiermee gemoeid zijn. De betrokken percelen kunnen (per jaar of per leidingsoort) berekend worden. Met een GIS (lees: door het weten van de locaties van zowel de percelen als de leidingen) kunnen dergelijke zaken vrijwel met één druk op de knop gevisualiseerd en berekend worden. Zonder een GIS had de gemeente alle percelen aan alle leidingen moeten koppelen, bijvoorbeeld in een relationele database. Dat was veel kostbeerder en lastiger te beheren geweest.
  • Kaart E: van één perceel kan automatisch berekend worden welke soort objecten (hier: leidingen) er onder liggen. Dat kunnen er meerdere zijn, één, of géén. Ook dat laatste is een antwoord!

Ad Berekeningen:

  • Kaart F: Wanneer de gemaakte analyses worden weggeschreven in de database (bij de geo-informatie wordt opgeslagen) is sprake van verrijking van data. Bij kaart F is de datalaag 'wijken' over de eerder getoonde kaart 'heengelegd'. Met één 'druk op de knop' zijn alle percelen uit de database aangevuld met het 'attribuut' (kenmerk) "wijknummer". De GIS bespaart op deze wijze veel invoertijd bij de beheerders en de kans op fouten neemt af.
  • Kaart G: Hier is te zien hoe percelen worden geselecteerd die binnen 50 meter van lantaarpalen liggen. Wanneer hier bijvoorbeeld onderhoud bij moet worden gepleegd, of de kleur verandert van wit naar neon, dan zijn die omwonenden 'met een druk op de knop' bekend, zonder handmatige berekeningen.

Ad beheer:

  • Met beheer wordt bedoeld, inwinning, controle, invoer, aanpassingen en verwerking van verkregen data tot dat deze maximaal geschikt is voor geautomatiseerde verwerking. In de paragrafen 'Objectsoorten en opslag van geo-informatie' en 'Het bijzondere van GIS-data: de attributen' wordt verder toegelicht hoe dit in zijn werk gaat. In de paragraaf hiervoor zagen we al een reden waarom beheer van data soms makkelijker in de GIS kan gebeuren dan met andere (teken- of database) systemen; door bepaalde berekeningen kunnen gegevens eenvoudiger en/of met minder fouten ingevoerd worden.

Ad planning en voorspelling:

  • In de inleiding van dit handboek is eerder getoond hoe bepaald kan worden hoe varianten van een nieuwe weg om en dorp berekend kunnen worden (klik eventueel op de figuur rechts). De GISspecialisten (vaak van ingenieursbureau's) gebruiken daartoe hellingkaarten, kaarten met juridische beperkingen, en natuurwaardekaarten om te bepalen welke wegen en varianten mogelijk zijn, en wat de varianten kosten qua natuuropoffering en qua geld. Milieueffectrapportages zijn hier een mooi voorbeeld van. Als het gaat om voorspelling: hoe snel en waar een polder het eerst onderloopt is te bepalen met een GIS, waardoor een evacuatieplan beter kan worden geoptimaliseerd. Ook erosie in Limburg kan zo goed worden voorspeld.

Dit zijn voorbeelden van een aantal zeer gangbare functionaliteiten van GIS-software. De werkelijke mogelijkheden zijn véél groter. GIS als software bestaat als sinds de 80-er jaren. De ontwikkelingen zijn met name sinds 1990 zeer hard gegaan, en zijn betaalbaar geworden. Op het gebied van beheer, 3D-visualisatie, geo-statistiek, geo-coderen, cartografie, geo-processing, netwerk-analyses zijn de functionaliteiten zeer breed en specialistisch te noemen.

GIS-toepassingen zijn onder meer te vinden in / bij:

  • incidentmanagement, risicomanagement en risicokartering
  • marketing en verzekering
  • mobiele toepassingen (inwinning geo-informatie, politietaken, periodiek inspecteren van van objecten (schouwen)

:* bezig met uitbreiden en sorteren...

NB: Dit handboek richt zich met name op het (goed) visualiseren van geo-informatie. Analyses en (beheer)toepassingen zijn vaak én zeer specifiek, én worden als mogelijkheden vaak al in de GIS (software) boeken uitgebreid uitgelegd. Daarnaast zijn die functionaliteiten per GIS-pakket zeer verschillend en worden ze verschillend genoemd.

Wat is een GIS-model?

Geo-informatie is als een pop of een modelauto; het is niet de werkelijkheid, maar geeft modelmatig weer hoe over de objecten nagedacht wordt, of nagedacht dient te worden. Zo'n model lijkt een beperking, maar kan ons ontzettend goed helpen om dát te zien waar het om gaat, en niet meer.

Voordat er een kaart gemaakt kan worden heb je - zoals eerder opgemerkt- een GIS-model nodig. Simpel gezegd is een GIS-model een verzameling (kaart)gegevens, verkregen uit metingen of berekeningen, meestal van een beperkt gebied; geo-informatie.

GIS-modellen bestaan uit gestapelde, digitale lagen (geo-)informatie (datasets). De lagen liggen in één overeenkomstig assenstelsel. Elke laag bevat (de locaties) van objecten. Elke locatie of object is gelinkt aan een database met attribuut-informatie (in het figuur de Z-as). De 'Z'-as is in dit verband niet per definitie een 'hoogte'as, maar geeft - voor welke laag dan ook - de attribuutwaarde weer. Bijvoorbeeld de hoogte, het grondgebruik, de onderhoudstatus of de aanwezige of toekomstige infrastructuur. Op basis van overeenkomstige Z- en Y-waarden kunnen de Z-waarden in een model verder verwerkt of gebruikt worden. Het kunnen combineren van de kaartlagen geldt dus niet alleen voor het kaarten maken, maar ook voor verdere analyses. De attribuutwaarden zelf kunnen namelijk geherclassificeerd worden. Of ze kunnen samen met attribuutwaarden van andere lagen gecombineerd worden, door zogenaamde ruimtelijke analyses.

Hierboven werd al een voorbeeld genoemd waarbij een nieuwe supermarktlocatie moest worden bepaald met een GIS. Gezien de input - er werd over vijf soorten informatielagen gesproken - was er in die 'case' al een (sociaal-economisch) GIS-model bekend. GIS-modellen kennen blijkbaar niet alleen een ruimtelijke component (jouw input) maar ook een vakinhoudelijke kant.

Kijk eens naar het figuur met de foto van een Oostenrijks dal. Hier is de plaats van een GIS-model te zien bij de totstandkoming van een GIS-opdracht. De GIS-opdracht was simpel; laat zien waar de mogelijkheden zijn om een weg aan te leggen om het dorp heen, gezien alle daar geldende beperkingen. Met de nodige vakkennis (het brein rechtsboven) van een planoloog of fysisch geograaf worden de benodigde informatielagen in stelling gebracht. Zoals maximaal mogelijke hellingshoeken, belemmerende regelgeving, bebouwing, enzovoort. Merk op dat al deze input (informatielagen) een ruimtelijke component hebben. Zelfs regelgeving is in een informatielaag weer te geven.

Kartering van een smal Oostenrijks dal met te veel wegverkeer door het dorp.

Tezamen vormen deze informatielagen het belangrijkste deel van het GIS-model. Het GIS-model wordt gebruikt als een modelmatige representatie van de werkelijkheid, op basis van hoe tegen de werkelijkheid aan wordt gekeken. Dat is dus een model met een bepaald (en beperkt) doel. De output / de kaarten die ermee gemaakt kunnen worden zijn dus ook per definitie beperkt. Merk op dat het GIS-model in de figuur niet alleen uit kaarten bestaat, maar ook uit (de mogelijkheid tot) berekeningen. In de output is namelijk ook het begrip steilheid nodig; deze wordt in het model berekend. De steilheid is door een GIS vanuit de informatielaag 'hoogte' op elk punt berekend. Dit was nodig om te kijken waar de steilheid niet te groot zou zijn.

Soms lees je dat het ontwerpen van een GIS-model (of de fysieke database ervan, of het verzamelen van een set data nodig voor een kaart) hetzelfde is als het zoeken naar de beste representatie van de werkelijkheid buiten. Eigenlijk is dat zéér fout. Omwille van kostenefficiency én om moeite te besparen ga je namelijk vooral niet 'alles wat je buiten ziet' in kaart brengen. Je zult nét zo nauwkeurig data willen inwinnen, of die data aanschaffen, die nét nog voldoende is voor het beantwoorden van je vraag. Wat wél bedoeld wordt, is dat de werkelijkheid buiten - voorzover die nodig is voor het beantwoorden van vragen - zo goed mogelijk beschreven moet worden.

Wat is geo-informatie?

In dit handboek wordt geo-informatie gezien als input voor een GIS, noodzakelijk om een thema te visualiseren of een kaart te maken.

Kennis over geo-informatie is nodig om voor de juiste input te kunnen zorgen, zodat de kwaliteit van het eindproduct - de analyse of de kaart - vooraf gegarandeerd kan worden richting de opdrachtgever en de doelgroep.

Hieronder volgen daarom:

  • hoe geo-informatie is opgebouwd en hoe dit wordt opgeslagen
  • de eigenschappen/beperkingen van geo-informatie die hier uit volgen.

Objectsoorten en opslag van geo-informatie

Steeds verder inzoomen (van links naar rechts) op twee soorten geo-informatie rasterdata (bovenste rij) en vectordata. Te zien is dat door de eigenschappen en de per definitie beperkte nauwkeurigheid, er beperkingen zitten aan hoe geo-informatie kan worden gebruikt.

Geo-informatie beschrijft de werkelijkheid door een beschrijving er van in drie objectsoorten:

  • punten
  • lijnen
  • vlakken.

Deze objecten kunnen op twee manieren in bestanden of databases worden opgeslagen: als

  • vectordata en als
  • rasterdata.

Bij de opslag worden de objectgegevens vaak in twee delen beschreven:

  • De geografie, waarin de coördinaten van de objecten - de locatie ervan op aarde in een bepaald coördinatiestelsel - worden beschreven.
  • De administratieve gegevens', waarin de 'attributen' worden beschreven. Met 'administratief' wordt bedoeld de tekstuele of numerieke classificatie of benoeming. Denk aan omschrijving, kwalificatie, status, naam, jaartal, et cetera.

De reden dat geografische en administratieve gegevens in twee aparte delen worden beschreven, heeft te maken met het feit dat het lezen, opslaan en vooral rekenen met geografische gegevens veel efficiënter en sneller kan indien die gegevens in aparte, binaire formaten worden opgeslagen. Dit apart opslaan gebeurt zowel in bestandsgeoriënteerde opslag als bij ruimtelijke databases, ook al lijkt het soms om één bestand of één tabel in de database te gaan. Naast de geografische en administratieve objectgegevens kunnen bij de geo-informatie ook andere, extra gegevens worden opgeslagen, zoals:

  • projectiegegevens
  • standaardlegenda
  • onderlinge relaties
  • cartografische coördinaten indien die moeten afwijken van hun geografische coördinaten en
  • topologische regels, waarmee onderlinge consistentie op attribuutwaarden en geografische kenmerken kunnen worden afgedwongen
  • metadata.
Metadata is 'data over data', waarmee bedoeld wordt dat de gehele dataset, dus niet de individuele objecten, beschreven wordt met kenmerken als actualiteit, beheerder, betekenis van de attributen, compleetheid, geografische dekking, inwinningsschaal, enzovoort. Metadata kan zowel los, als bij het bestand zijn opgeslagen. Metadata is essentieel voor het kunnen gebruiken en interpreteren van de geo-informatie, zie onder 'toepassingscontext'.
Overigens, ook bij de uiteindelijke publicatie kan het nuttig of noodzakelijk zijn om delen uit de metadata kenbaar te maken aan de doelgroep. Bijvoorbeeld door onder aan een kaart te melden: 'Het percentage CDA-stemmers per gemeente is uit een exit poll van 2006, en kent een nauwkeurigheid van plus of min 2 %'. Merk op dat er bij geo-informatie een attribuutnauwkeurigheid is en een geometrische nauwkeurigheid. Attribuutnauwkeurigheid wordt vaak vergeten door GIS-specialisten.
  • Bij vectordata worden de locaties van individuele objecten beschreven middels punten, lijnen en vlakken:
  • Een punt(object) wordt voorgesteld door één coördinaat.
  • Een lijn bestaat uit minimaal twee met elkaar verbonden coördinaten. Zijn het er méér dan twee dan worden de tussenliggende coördinaten vertices genoemd. Hoe méér vertices, hoe nauwkeuriger de lijn kan worden opgeslagen; De omtrek van een provincie is met 100 punten te beschrijven, maar met 1000 punten is beter wanneer ook op gemeenteniveau moet worden ingezoomd.
  • Een vlak (ook wel een polygoon genoemd) bestaat uit een lijn waarvan het beginpunt gelijk is aan het eindpunt; alle coördinaten ertussen behoren tot dat vlak. Er kunnen ook vlakken met gaten en zogeheten multivlakken beschreven worden. Bij multivlakken wordt bijvoorbeeld de provincie Friesland als één object gedefinieerd, dus de vlakken van het vaste land en die van de eilanden worden als één object, een regel, opgeslagen. Dit heeft onder andere als voordeel dat de naam en de afkorting van de provincie niet voor elk onderdeel van zo'n vlak hoeft te worden opgeslagen en beheerd. Maar ook is het oppervlak van de gehele provincie met dat ene multivlak direct te berekenen in een GIS.
Voorbeeld van (onomkeerbare) conversies van vector- naar raster-data en weer terug.
  • Bij rasterdata worden objecten - onafhankelijk of het lijnen, punten of vlakken zijn - door attribuutwaarden op een (meestal) regelmatig grid (raster) opgeslagen.
  • Een rastercel wordt ook wel pixel genoemd, niet te verwarren met de pixels van een beeldscherm. Pixel is afgeleid van het Engelse 'picture element'.
  • Een object kan nooit nauwkeuriger dan de grootte van één pixel worden beschreven. Is een (punt-, lijn, of vlak) object kleiner dan een halve pixel, dan zal dit object niet worden beschreven, óf het object is bewust te groot afgebeeld. Een lijn bestaat uit meerdere losse pixels (zie de rivier in het middelste plaat rechts). Zoals het is opgeslagen is het geen lijn, slechts visueel is dit als lijn te herkennen, omdat de individueel opgeslagen 'lijn/rivier' pixels met dezelfde kleur zijn gevisualiseerd. Merk op dat in het voorbeeld de rivier ergens ook geen aangrenzende pixels kent!
  • In elke pixel wordt één of meerdere attributen gedefinieerd, zoals in het voorbeeld de grondgebruiksklasse. Elke pixelwaarde is onafhankelijk van waarde in de pixel daarnaast, en wordt dus ook onafhankelijk van de andere waarde opgeslagen. Rasterbestanden zijn dan ook vaak groter dan vectorbestanden, waarin de waarde van een groot vlak slechts één keer wordt opgeslagen.
  • In een GIS kunnen rasterbestanden alleen worden ingelezen als deze bestanden ook ruimtelijke context bevatten. Hierin staat meestal de celgrootte van het raster dat gebruikt is, bijvoorbeeld in meters, en de coördinaten van de linker onderhoek. Deze informatie kan in het bestand zelf staan, zoals bij een 'Geo-tiff'-bestand, of er buiten in een apart bestand worden opgeslagen, zoals bij een 'tif-bestand'. Die aparte bestanden worden soms ook world-files genoemd. Houdt dit in de gaten als je rasters aangeleverd krijgt. Zonder deze coördinaten kan je de rasterdata nooit (of zeer onnauwkeurig) op de juiste plek in je GIS / kaart krijgen.
  • Op luchtfoto's en satellietbeelden bepaalt de grootte van de objecten of een punt- of lijnvormig object nog (goed) waargenomen kan worden, zie de afbeelding van Texel.
  • Bij topografische rasterkaarten zijn puntobjecten vaak symbolisch vergroot. Denk aan kerktorens, hunebedden, windmolens en wegwijzers.
  • Rasterdata bestaat er in:
  • een 'intelligente' vorm, waarin elke rastercel een attribuut vertolkt dat ook een fenomeen beschrijft, zoals in het voorbeeld rechts, het landgebruik. Bijvoorbeeld: alle pixels met het grondgebruik 'bos' krijgen als attribuutwaarde in de kolom grondgebruikklasse de code 'B' (afkorting van Bos). De visuele kleur is dan voor alle pixels in één actie te bepalen met GIS, waardoor het bos geheel groen wordt (of rood indien gewenst).
  • een 'niet intelligente' vorm. Hierbij beschrijft de rasterdata met kleuren rechtstreeks een luchtfoto of kaart. De cellen hebben dan géén attribuutwaarde, maar een kleur. Die kleur kan een kleur zijn zoals een satelliet- of luchtfoto die heeft waargenomen, of zoals een kaartenmaker die heeft bepaald. Met een GIS zijn die kleuren slechts iets lichter of iets donkerder te maken. Een luchtfoto lichter maken kan handig zijn als die luchtfoto's letterlijk op de achtergrond moet komen, zie verder Deel C; kaartopmaak.

Rechts een voorbeeld van hoe de kwaliteit van data achteruit kan gaan bij conversies. Hier betreft het eerst een 'vector-naar-raster' conversie, daarna een 'raster-naar-vector' conversie.

  • Doordat bij de eerste conversie een grof grid is gebruikt, is de middelste rasterdata wellicht niet geschikt voor bepaalde gedetailleerde uitspraken.
  • Het is ook mogelijk dat rasterdata geconverteerd wordt naar vectordata. Wanneer dat het geval is lijkt de nauwkeurigheid misschien groter geworden; er kan op worden ingezoomd zonder dat men de grootte van de originele cellen ziet. Merk op dat in dit voorbeeld de rastergrootte erg groot is, dat de rivier als vlak niet meer één gesloten vlak is en dat (veel detail bij de) bebouwing verdwenen is. Bij oppervlakte berekeningen van het bos zou een dergelijke kaart misschien nog voldoende zijn.
  • Bij zowel raster- als vectordata is het ver kunnen inzoomen gelimiteerd. Bij ver inzoomen op rasterdata is de onnauwkeurigheid als snel te zien door de blokkerige structuur. Bij vectordata is de onnauwkeurigheid niet te zien: de objecten zijn in vlakken of lijnen.
  • Er gaat altijd informatie verloren, deze kan beperkt worden bij een kleine celgrootte van het raster.

SAMENVATTING: Objecten kunnen met geo-informatie middels punten, lijnen en vlakken worden beschreven. De beschrijving bestaat meestal uit zowel hun de coördinaten van de objecten, als uit andere objectkenmerken en -beschrijvingen. De objecten kunnen als rasters en als vectoren worden opgeslagen. Een mogelijke conversie van rasterformaat naar vectorformaat zorgt niet voor verlies van kwaliteit, maar wel verlies van kennis over die kwaliteit. Een conversie andersom, van vector naar raster formaat, zorgt bij te grote rastercellen al gauw voor verlies aan kwaliteit.

TIP: In het algemeen geldt: zorg dat je kennis hebt over hoe de kaarten die jij gebruikt tot stand zijn gekomen.

CAD-data en GIS-data

Een typisch voorbeeld van CAD-data. Teksten zijn geometrisch opgeslagen, eigenschappen van bepaalde gebieden, zoals asfaltering of gebruik, zijn met puntsymbolen en afgekorte teksten aangeduid.
Een typisch voorbeeld van GIS-data. De teksten zijn in de attributen opgeslagen. Soms worden die gebruikt om labels te genereren, meestal worden ze gebruikt om met een kleur een eigenschap (bouwland, grasland of geasfalteerd) aan te geven. Merk op dat het kruispunt als een apart object is getekend.

Vaak wordt door GIS-specialisten gesproken over de term 'GIS-data', als verbijzondering van geo-informatie. Ze doen dat bewust, omdat niet alle soorten geo-informatie met een GIS eenvoudig tot een kaart zijn om te vormen. Geo-informatie is namelijk een verzamelterm voor alle informatie met en geografische component. Dus ook CAD-(Computer Aided Design) gegevens vallen onder geo-informatie. Het bijzondere van GIS-data is dat niet alleen de punten, lijnen en vlakken worden opgeslagen, ook de bij die objecten horende attributen. Vandaar dat GIS-data, boven CAD-data, ook wel 'intelligente' data worden genoemd. Daardoor zijn er binnen een GIS plotseling veel meer mogelijkheden, zowel op het gebied van visualisaties (zie volgende paragraaf) als op het gebied van ruimtelijke en administratieve analyses.

Overigens, met 'administratief' wordt bedoeld niet de ruimtelijke gegevens van objecten in GIS-data, maar de tegenhanger ervan, de tekstuele en numerieke tabelgegevens.

Enkele eigenschappen van CAD-data en GIS-data:

  • CAD-data wordt vaker voor ontwerp- en landmeetkundige toepassingen gebruikt. Bij CAD-data hangt er aan objecten meestal geen database gegevens aan. Voorbeelden van CAD-formaten die een GIS-specialist kan tegenkomen zijn Designfiles (dgn) van Microstation en Drawing-files (dwg) van AutoCad. Kleur en lijnstijl geven kenmerken weer van wat gekarteerd is. In CAD-data wordt de kleur en de lijnstijl direct in het (geografische) bestand opgeslagen. Hierdoor is nauwelijks te selecteren op kenmerken, of met de kenmerken te rekenen. In de figuur is te zien dat niet alle lijnen van een CAD-bestand per se elkaar moeten raken; het is meer een tekening van symbolen, dan dat elk individueel object is beschreven. Teksten zijn dicht bij de symbolen geplaatst, zodat visueel duidelijk is welk nummer hoort bij welk punt, of welke beschrijving (struiken, bomen) hoort bij welk vlak.
  • GIS-data wordt meer voor beheerdoeleinden gebruikt, denk aan het beheren van de infrastructuur, transport, het gemeentelijk groen en vastgoed. In GIS-data wordt, in tegenstelling tot bij CAD-data, in het bestand meestal niet opgeslagen hoe de objecten er in gevisualiseerd moeten worden. Dat visualiseren moet nog in een GIS gebeuren en gaat geautomatiseerd voor alle objecten gelijktijdig op basis van de attribuutwaarden in de achterliggende database. Dat biedt de GIS-specialist een ongekende vrijheid om de GIS-data te visualiseren. De gekozen visualisatie wordt door zo'n GIS buiten de GIS-data opgeslagen.

GIS-specialisten hebben dus het liefst GIS-data, ook wel intelligente of 'GIS-waardige' data genoemd. Overigens, in de meeste GIS-pakketten is ook CAD-data in te lezen. GIS-pakketten hebben er echter wel vaak moeite mee. De in CAD-data opgeslagen visuele eigenschappen als lijndikte, lijnstijl en kleur en gebruikte puntsymbolen gaan dan verloren.

Is CAD-data objectgeoriënteerd, dan kan deze met wat moeite omgezet worden in GIS-data. Ontwikkelaars van CAD-software slagen er steeds meer in om ook met hun CAD objectgeoriënteerd bestanden te kunnen leveren, waar wél attribuutdata in opgeslagen is en die wél goed is in te lezen in een GIS. CAD en GIS groeien daarmee steeds meer naar elkaar toe. Soms lezen ze dezelfde data in. In de praktijk zal echter voorlopig nog steeds gelden: werk je met een GIS, zoek dan in eerste instantie naar GIS-data.

Objectgeoriënteerd

Wel of niet objectgeoriënteerd tekenen bepaalt de waarde ervan voor een GIS. In dit voorbeeld zijn twee aangrenzende kadastrale percelen op drie verschillende wijzen getekend. Links zijn lijnen getekend, rechts zijn objecten getekend (objectgeoriënteerd).

Met name bij CAD-data worden lijnen van objecten niet altijd netjes exact op elkaar aangesloten (zogeheten undershoots). Dat is ook niet erg wanneer deze data 'slechts' voor visualisatie wordt gebruikt, zolang er maar niet te ver op wordt ingezoomd. Het is dan ook niet erg dat de tekenaars de lijnen te ver doortrekken daar waar ze op een andere lijn hadden moeten eindigen (overshoots). Met andere woorden CAD-bestanden worden lang niet altijd wat we noemen 'objectgeoriënteerd' opgebouwd. Bij verwerking in een GIS is dit objectgeoriënteerd zijn echter vrijwel een noodzaak.

Met objectgeoriënteerd (ook vaak objectgericht genoemd) wordt bedoeld dat de lijnen niet getekend zijn om allerlei grenzen aan te geven, maar om de objecten aan te geven. Begin- en eindpunten van lijnen zijn niet lukraak gekozen, maar stoppen en starten daar waar het object ook begint en eindigt. Ook voor vlakken geldt dat die niet omgeven worden door lukraak getekende lijnen, maar door één omhullende lijn. Twee rechthoekige aangrenzende percelen worden niet weergegeven door 7 of 8 lijnen, maar door 2 vlakken (zie figuur).

Tijdens het digitaliseren met CAD-software of achteraf met een GIS is middels topologische regels af te dwingen dat lijnen en vlakken objectgeoriënteerd worden getekend of opgeslagen. Er is bijvoorbeeld in te stellen dat lijnen op minimaal twee andere lijnen moeten aansluiten, anders had die lijn één lijn moeten zijn. Of dat vlakken (in het geval van grondgebruik of percelen) elkaar niet mogen overlappen. Zie verder de toelichting bij de figuur.

TIP: Wil je verstoken blijven van problemen of conversies met je GIS om CAD-data om te zetten naar GIS-(waardige) data, zorg dan dat de CAD-data die je krijgt objectgeoriënteerd is, of, veel beter, dat je GIS-(waardige) data krijgt. Ben je toch afhankelijk van niet-objectgeoriënteerde CAD-data, dan kan je die in een GIS waarschijnlijk alleen als achtergrondkaart gebruiken. Veel berekeningen of een ingewikkelde visualisatie op basis van verschillende lijn- of vlak-soorten zullen niet lukken.

Het bijzondere van GIS-data: de attributen

Hieronder, om elk misverstand uit te sluiten, hoe objecten uit werkelijkheid en de attributen van die objecten worden opgeslagen in een GIS-bestand.

Hoe objecten en hun attributen in rijen en kolommen worden opgeslagen in een GIS. Dit geldt voor vrijwel alle dataformaten van alle leveranciers, voor zowel file-gebaseerde bestanden als op databases. Het meeste zal de lezer logisch voorkomen. Maar wie nog onbekend is met GIS moet de opbouw kunnen begrijpen. Niet zozeer om een GIS-specialist te kunnen volgen, maar om het maximale uit een GIS te halen.

In het figuur hieronder wordt duidelijk dat GIS-data uit een geografische en een administratieve component bestaat:

GIS-data zoals die wordt opgeslagen in een bestand of database bestaat uit twee delen, een geografisch en een administratief deel. Of het nu punten, lijnen of vlakken zijn, de objecten die in beide delen worden beschreven zijn via een 'ID' gekoppeld.

In de geografische component wordt de geometrie beschreven, oftewel de bij de objecten behorende coördinaten van de punten of vertices (bij lijnen en vlakken). In de administratieve component worden alle thematische gegevens beschreven, op basis van allerlei denkbare tekstuele en getalsmatige gegevens.

Zonder geo-visualisatie is GIS-data slechts ruwe data. Pas met een GIS komt de data tot leven en ontstaat een echte kaart. Dat gaat op basis van de attributen bij de GIS-data; voorwaarde is dat de data objectgeoriënteerd is. Te zien zijn drie voorbeelden met dezelfde GIS-data (linksboven) als uitgangspunt. Rechtsonder zijn die attributen niet als symbolen, maar als teksten geplaatst.

Middels een ID (dit is een Engelse afkorting, spreek uit: "ai-die") oftewel een overeenkomstig 'identificatienummer', is bekend welke regel in de tabel bij welke object in de kaart hoort. Bij bedrijfstoepassingen of bij zeer grote hoeveelheden administratieve gegevens word veel attribuutgegevens vaak opgeslagen en beheerd buiten de GIS-data, in een externe database. Slechts dat éne ID is dan voldoende om de objecten op basis van attributen uit de database juist te kunnen visualiseren. Er moet dan wel een verbinding (of on-line koppeling) tussen het GIS-pakket en die externe database zijn.

Wanneer je in een GIS-pakket GIS-data laadt, zal eerst voor alle objecten uit een GIS-bestand één willekeurige kleur worden getekend. Alle objecten (bijvoorbeeld: alle punten) hebben dan dezelfde kleuren. Op basis van de thematische / administratieve gegevens uit de tabel zijn de individuele objecten dan andere kleuren of symbolen toe te kennen. Dat is te zien in de figuur hier rechtsboven. Duidelijk is dat de attribuutwaarden van de verschillende objecten, samen met de inventiviteit van de GIS-specialist, bepalen hoe de objecten uit de GIS-data gevisualiseerd worden. De mogelijkheden zijn 'eindeloos'. Richtlijnen over hoe dat moet gebeuren staan in de delen B en C van dit handboek.

Let op: buiten deze twee bovenstaande paragrafen wordt niet specifiek over GIS-data gesproken. Gekozen is om de term geo-informatie te gebruiken, een algemeen geaccepteerde, neutrale term. Vaak zal echter wel bedoeld worden: GIS-data, omdat dit voor een GIS-specialist de meest ideale geo-informatie is.

Eigenschappen van geo-informatie

Uit bovenstaande paragrafen zal het nu duidelijk zijn waarom geo-informatie géén kaartlaag genoemd mag worden. Geo-informatie staat in dienst van een GIS-model. Een GIS-model om analyses of kaarten te maken. Een (digitaal gemaakte) kaart bestaat uit één of meer geo-informatie bestanden / datasets, die geheel of gedeeltelijk in een kaart gebruikt of getoond kunnen worden. Zo kan een GIS-data bestand 'topografie' ook gebruikt worden om op een kaart alleen straten weer te geven.

Een GIS beschrijft de werkelijkheid - voor zover de mens die al kan kennen - met allerlei beperkingen. Jij als GIS-specialist moet die altijd in het achterhoofd houden. Een GIS beschrijft niet de werkelijkheid. Dat komt omdat de geo-informatie die er in zit (vaak foutief dus kaartlagen genoemd; datasets is beter) een gedwongen beperking van die werkelijkheid is.

Hier volgen een aantal van die eigenschappen, die beperkingen kunnen zijn.

  1. Toepassingscontext. De data is slechts nuttig binnen een bepaalde toepassingscontext. Elke toepassing stelt andere eisen aan data. Een voorbeeld. Een GIS-model voor de gunstigste busroutes zal een dataset 'wegen' bevatten, maar zonder de zandpaden. Een GIS voor een volledige stratenatlas zal die zandpaden wel moet kennen. Een ander voorbeeld. De wegbreedte wordt door een beheerder die ook de berm moet maaien, anders gedefinieerd dan een automobilist dat zou doen. Een autonavigatiesysteem zal weer géén wegbreedte nodig hebben bij die dataset 'wegen', die wil van elke weg de maximale snelheid weten.
  2. Generalisatie / weglating. De data bevat niet alle (kleinere) objecten. Een dataset 'rivieren' voor een atlas van heel Nederland zal niet de (kleine) Dortherbeek in de Achterhoek beschrijven, die een GIS-specialist die de beekdalgronden in kaart wil hebben toch echt wél nodig heeft.
  3. Nauwkeurigheid. De nauwkeurigheid kan niet optimaal zijn. De dataset 'kust' van Groot-Brittannië voor een kaart in een atlas zal al snel nauwkeurig genoeg zijn. Maar deze geeft nooit de werkelijkheid weer zoals een strandjutter in Plymouth die ervaart. Bij geo-informatie levert het aspect nauwkeurigheid vaker een beperking of limiterende factor dan het aspect precisie. Omdat deze twee termen vaak door elkaar gehaald worden, volgt hier toch het aspect precisie. Bij geo-informatie is zowel sprake van een attribuutnauwkeurigheid als een geometrische nauwkeurigheid. Zoals eerder gezegd, attribuutnauwkeurigheid wordt vaak vergeten door GIS-specialisten. Met attribuutnauwkeurigheid wordt bedoeld de nauwkeurigheid van de gemeten thematische waarden (attributen) van de objecten in de dataset. Denk aan een bestand met locaties van vijftig steden in Afrika met het aantal inwoners. Het aantal inwoners, een attribuut, kan zeer onnauwkeurig zijn, daar waar de locatie (geometrische nauwkeurigheid) zeer groot is.
  4. Precisie. Precisie is iets anders dan nauwkeurigheid. Precisie wordt bepaald door het aantal cijfers achter de komma waarmee een gemeten eenheid wordt opgeslagen. Laten we eens aannemen dat er een foutloze, onbetwistbare hoogtemeting van de Mount Everest is gedaan. Wellicht is de uitkomst daarvan 8850,36m plus of min een halve meter. De nauwkeurigheid is een halve meter. Dat betekent dat in werkelijkheid (zouden we die al kunnen weten of benaderen) de berg best 8849 of als we pech hebben 8851,50 zou kunnen zijn. De precisie waarmee de waarde is opgeslagen is 0.01 meter (twee decimalen) Gezien de onnauwkeurigheid is daarom beter te spreken over een hoogte van 8850 meter, waarbij - om geen onnodige fouten te introduceren bij bijvoorbeeld verschilmetingen - wel gewoon die 8850,36m in de database blijft staan. Ook op een kaart dient dan dus 8850 te staan, en niet iets 'nauwkeurigers'. Het is daarom heel gebruikelijk bij (geo-)informatie, dat waarden schijnbaar 'te precies' zijn opgeslagen. Vooral bij interpolaties. Maak niet de fout de precisie er uit te halen - door bijvoorbeeld cijfers achter de komma weg te gooien- door de precisie te bestempelen als onnauwkeurigheid. Het kaartbeeld zou door een dergelijke actie vreemde vormen aan kunnen nemen.
  5. Mutaties. De werkelijkheid verandert in de tijd. Wegen worden gebouwd, rivieren verleggen zich of worden wadi's, steden groeien en geluidsniveaus of bodemvervuilingscontouren veranderen snel of langzaam. Een bijzonder voorbeeld is een luchtfoto met daarop de 'kustlijn' van een gebied waar eb en vloed heerst. Je zou er verkeerde conclusies aan kunnen verbinden als de luchtfoto juist bij eb is genomen... Kaarten kunnen overigens wel helpen om (langzaam) wijzigende fenomenen helder weer te geven. Bijvoorbeeld kaartseries van bebouwde kommen of bodemvervuilingscontouren. Die zouden om de tien jaar kunnen aangeven in welke richting de stad uitdijt of hoe de vervuiling - door grondwaterstromingen - langzaam groter maar minder geconcentreerd wordt. Naast kaartseries kunnen ook verschilkaarten berekend worden op basis van twee opeenvolgende kaarten van hetzelfde gebied met hetzelfde fenomeen.
  6. Definities. Definities van objecten in datasets kunnen uiteenlopen, deels misschien het resultaat van de toepassingscontext. Maar dit misschien ook het resultaat van cultuur tussen twee gebieden/landen. Of verschil van inzicht dat niet is uitgesproken. Wat de één 'bebouwing' noemt, zal de ander splitsen in 'huizen en boerderijen', waarbij de schuren in eens niet worden meegenomen. Of Wadi's worden door de één wel tot rivieren gerekend, door de ander niet.
  7. Fuzzy-grenzen. In werkelijkheid gaat een steppe langzaam over in een bos. Maar waar ligt de grens? Gaat een steppe bij meer dan 10 bomen per hectare over in een bos? En hoe nauwkeurig valt die grens dan in te winnen en vervolgens te karteren? Ook een indicatie als wel of niet vervuild lijkt helder. Er zal immers een bepaalde drempelwaarde overschreden zijn. De kaart die vervolgens van zo'n dataset wordt gemaakt zal dus ook een haarscherpe grens opleveren. Zeker wanneer er veel en nauwkeurig is gemeten. De werkelijkheid is echter anders: er is gewoon een overgangsgebied. Dit geldt onder andere ook voor bodemkaarten. Dergelijke grenzen worden 'fuzzy-grenzen' genoemd.
  8. Classificaties. Door classificatieverschillen zijn gegevens misschien niet goed combineerbaar / bruikbaar. Een voorbeeld. Bij de zeegraskartering, door het Rijksinstituut Kust en Zee van Rijkswaterstaat, wordt in Nederland onderscheid gemaakt in een bepaald percentage bedekking. Een andere karteerder/bioloog had misschien gedacht aan: zeegras komt wél of niet voor en weer een andere karteerder neemt als norm: pas bij meer dan 30% bedekking bestempel ik de begroeiing als 'zeegras'. Het moge duidelijk zijn dat de twee alternatieve karteringen nauwelijks verantwoord zijn te combineren met de eerste kartering. In deel B wordt verder in gegaan op meetschalen en classificaties.
  9. Compleetheid. Waar de ene toepassing genoeg heeft aan 'de belangrijkste objecten' zal een ander ze toch echt allemaal moeten hebben. Stel iemand heeft bijvoorbeeld een bestand met zo ongeveer alle belangrijkste overwegen om een beeld te krijgen van waar die het meeste voorkomen. Dat kan dan afdoende zijn. Echter dit is beslist onvoldoende voor een beheerder van de railinfrastructuur of een gemeente. Die moeten respectievelijk de veiligheid en mogelijke verbindingsroutes voor wandelaars kennen.
De genoemde beperkingen worden bij het gebruik van geo-informatie soms geconstateerd en als fout gekwalificeerd. (Hé, het klopt niet dat die monumentale boom volgens dataset/kaart BOOMLOCATIES ligt die en die plek, want het valt volgens dataset/kaart KADASTRALE_KAART op het verkeerde perceel).
Nog een leuke uitspraak (Bron: Wikipedia 2007 [1], auteur onbekend):
  • "Er is al een statisticus verdronken in een meer dat gemiddeld een halve meter diep was."
Wanneer dit een cartograaf was, was deze zeker niet goed gekwalificeerd!

Wanneer jij bovenstaande beperkingen kent, weet je welke kaartlagen wel of niet mogen worden gecombineerd, welke conclusies mogen worden getrokken en - eventueel - welke waarschuwingen je de gebruiker mee moet geven met de kaart. In Deel B en C zullen aan deze beperkingen cartografische principes worden verbonden. Zoals - in het geval van de boom - met welke schaal en dikte je bepaalde symbolen moet weergeven. En in hoeveel verschillende klassen classificeer je de bevolkingsdichtheid van 12 provincies of honderden gemeenten?

SAMENVATTING: De mens denkt in hokjes. Dat is nuttig; daardoor wordt immers de complexe werkelijkheid begrijpelijk, overzichtelijk en te beschrijven in datasets. Dat dit een model is, dient te allen tijde beseft te worden. Niet omdat die data niet betrouwbaar zou zijn, maar omdat die data om allerlei redenen misschien niet (her)gebruikt kan worden voor elk willekeurig doel.

TIP: Bedenk als GIS-specialist elke keer weer opnieuw of de dataset die je krijgt of al hebt wel voldoende is voor waar je het nu weer voor gebruikt. Je opdrachtgever zal dit niet altijd voor je doen. Jij wordt geacht te weten welke kenmerken de geo-informatie heeft die gebruikt. Het kan beperkingen met zich meebrengen die de opdrachtgever en de kaartlezer dienen te kennen. Informatie over nauwkeurigheid, toepassingsmogelijkheden en mogelijke beperkingen zijn te vinden in de metadata van die dataset. Vraag daarnaar bij de bron. Zoek eventueel naar alternatieve geo-informatie zonder die beperkingen. Zoek niet naar de beste (dure) informatie, maar naar geschikte informatie.

Toepassingscontext

steden #inwoners afkorting #klanten
alkmaar 47.000 AL 470
Heerhugowaart 25.000 HH 250
Amsterdam 370.000 AM 3.700
Haarlem 75.000 HA 750

De input die je gebruikt in een GIS is vaak niet (geheel) door jou of jouw bedrijf zelf ingewonnen. Of de data is afkomstig uit een afdeling die jij niet kent. Bekijk bijvoorbeeld eens bovenstaande tabel.

Mogelijke GIS-output o.b.v. de tabel.

Stel je bent redacteur van een krant in Noord-Holland. Je moet een kaartje maken van de belangrijkste steden van Noord-Holland, als illustratie bij een artikel. De data krijg je via de mail van een behulpzame collega. Die heeft de data - heel handig - van de website van het busvervoerbedrijf 'Synnexxion' gehaald. Wanneer hier snel met een GIS een kaartje van wordt gemaakt, is het kaartje rechts wellicht het resultaat. Keurig met titel. Niet gevraagd, maar toch gedaan: je hebt de grootte van de cirkels op de één of andere manier laten afhangen van het aantal inwoners. En je hebt ook mooi een legenda toegevoegd. GIS is prachtig gebruikt. Of toch niet? Je mag hopen dat de redactie de klachten van de lezers voor is.

Wat is er fout gegaan? Het aantal inwoners klopt niet. Dat stond wel in de kolomnaam van die tabel, maar bedoeld werd het aantal inwoners relevant voor Synnexxion. Namelijk, het aantal inwoners dat binnen een straal van 500 meter woont in de omgeving van de bushaltes. Notabene, steden als Zaanstad en Den-Helder staan er niet in. Waarom niet? Omdat deze tabel alle steden bevatte in Noord-Holland waar het fictieve bedrijf Synnexxion een aanbestedingscontract heeft voor het openbaar vervoer.

Toch was de tabel voor Synnexxion vrijwel foutloos. Het aantal inwoners, zoals door Synnexxion gedefinieerd, klopte wel degelijk. Waarom mag zo'n tabel toch niet gebruikt gebruik worden? Er is sprake van een andere toepassingscontext. Voor het bedrijfsmodel van Synnexxion is ook de geringe precisie van de aantallen en het tweetal spelfouten in de namen geen enkel probleem. In 'jouw' kaart staan die fouten wél te veel. De kaart binnen de muren van synnexxion is goed, er buiten is die kaart fout. Blijkbaar hebben data en kaarten een toepassingscontext.

Overigens, dat er meer mis is met de kaart van Noord-Holland (symbolen, uitlijning va de elementen, ontbreken van essentiële onderdelen), wordt in Deel B en C duidelijk. Er zijn ook twee opdrachten over.

SAMENVATTING: Gegevens worden ingewonnen voor een bepaalde - per definitie - beperkte toepassingscontext. Niet elke dataset die ergens voor geschikt lijkt, is dat ook. De wegendataset die in een TomTom (autonavigatiesysteem) wordt gebruikt is Nederlandsdekkend, is voor de autogebruiker je-van-het, maar is onbruikbaar voor het uitzetten van wandelroutes.

TIP: Bespreek met de bron van de dataset de betekenis van de velden, ga de bron na, raadpleeg de metadata bij deze dataset.

TIP: Ook al is de bron wél bruikbaar. Jij bent óók verantwoordelijk voor de output. In het voorbeeld zijn labels gebruikt. Labels op basis van een tabel die voorheen niet gebruikt werd voor externe communicatie. Er zitten twee fouten in de stadsnamen, dus ook in de labels die jij gegenereerd hebt. Een GIS neemt die fouten namelijk onverkort over. Controleer dus altijd de output. Ga niet klakkeloos uit van de juistheid van een bestand.

Case 1. De erosiegevoeligheidskaart: GIS als voorspeller

Het gebied waarvoor de erosiegevoeligheid moet worden gekarteerd in deze case.

In dit handboek staat vooral de geo-visualisatie centraal. De meest mooie analyses van GIS blijven daarbij -helaas- buiten beeld. Hier een goed voorbeeld van hoe met een GIS én een bepaald model verrassende output berekend kan worden. Cartografisch is er op het eindresultaat wat af te dingen. Het betreft dan ook een GIS uit 1996, waarin niet elke handeling zeer gebruiksvriendelijk was en waarmee cartografisch nog niet bepaald sterke producten konden worden gemaakt. In deze module 'Inleiding GIS' is dit niet erg; het toont dat een GIS ook als voorspeller kan dienen, als een model maar goed / wetenschappelijk onderbouwd is vastgelegd[1]. Andersom geldt gelijktijdig. Is het model (nog) niet goed / wetenschappelijk onderbouwd, dan kan een GIS de voorspelling toch in kaart brengen, waarna deze voorspelling verworpen of aangescherpt kan worden door extra metingen. Nu iets concreter.

Het doel is om te komen tot een erosiegevoeligheidskartering van een deel van het Limburgse heuvellandschap. Dat is dus geen voorspeller zoals het weer. Er kan namelijk niet mee voorspeld worden dat er binnen nu en een week op die en die plek 10 kubieke meter grond naar beneden komt. Het is meer een voorspeller zoals bij het klimaat. Gezien over een langere periode, is de kans dat er op die plekken veel grond naar beneden komt, duidelijk veel groter dan op andere plekken.

Hoe is zo'n voorspellende kaart met in dit geval erosiegevoeligheid te maken?

Hieronder - voor de lezers met weinig tijd - eerst een samenvatting van deze case, daarna het uitgebreide verhaal van de totstandkoming van de erosiegevoeligheidskartering.

  • SAMENVATTING.
Een vakspecialist heeft onderzoek gedaan. Uit waarnemingen blijkt steeds maar weer dat de erosie op een bepaald punt, afhankelijk is van (en dus voorspeld kan worden door) het hellingspercentage en het landgebruik. Op een (vaak onbegroeide) akker spoelt de regen meer en vaker grond weg, dan op grasland. En hoe hoger het hellingspercentage, hoe meer erosie. (Dit is een vakinhoudelijk model.) Door beide aspecten - hellingspercentage en landgebruik - van een bepaald gebied in twee rasterdatabestanden te zetten, kan van elk punt (pixel) berekend worden van de erosiegevoeligheid is. (Dit is een GIS-model.)
  • 1. HET ONDERZOEKSMODEL
Het begint niet bij een GIS-specialist, maar bij een vakspecialist. In dit geval een fysisch geograaf, een geo-morfoloog, een geoloog of een bodemkundige. Die vakspecialist zal een (vak-inhoudelijk) model moeten hebben of maken. Laten we aannemen dat uit zijn metingen (dat zijn puntmetingen of puntwaarnemingen!) blijkt dat de hellingshoek, en het grondgebruik goede voorspellers zijn voor de erosie. Hij heeft namelijk alle waarnemingen van erosie in dit gebied bekeken, en is tot de conlusie gekomen dat vanaf bepaalde hellingshoeken, en bij bepaald grondgebruik, veel vaker erosieverschijnselen zich hebben voor gedaan. Laten we als GIS-specialist nu aannemen dat hij dit goed gedaan heeft en dat er dus geen andere 'voorspellers' zijn, zoals grondsoort. Want een grondsoort löss is erg erosiegevoelig, en een grondsoort kalksteen of klei is minder erosiegevoelig. gelukkig stelt die vakspecialist ons gerust. Alle puntmetingen / waarnemingen die hij heeft gedaan zijn zijn gedaan in löss-gebieden, en het onderzoeksgebied zelf is ook geheel löss.
  • 2. VERKENNINGSFASE: HET OVERLEG
Nu pas komt de GIS-specialist aan bod. Samen met de vakspecialist bespreekt hij het model. 90% van de tijd is de vakspecialist aan het woord. De GIS-specialist luistert goed, vraagt indien hij iets niet begrijpt. Hij moet immers het model écht snappen en omzetten in een GIS-model. Uiteindelijk is dit het model (uit: [2] naar [3]). :
erosiegevoeligheid landgebruik met hellingspercentage (=de twee voorspellers)
zeer sterk akkerland op >8%
sterk akkerland op 5-8%
matig akkerland op 2-5% én grasland op >8%
licht akkerland op 1-2% én grasland op 5-8% én bos&boomgaarden op >8%
nauwelijks overige categoriën (lagere hellingshoeken als hierboven genoemd, en alle bebouwde gebieden en de snelweg
Merk op dat de GIS-specialist niet het model maakt, maar bespreekt. De GIS-specialist moet namelijk nu op zoek gaan naar kaarten die bovenstaand onderscheid kunnen maken. Er is wel een landgebruikskaart, maar die maakt onderscheid tussen bossen en boomgaarden. Zou de vakspecialist onderscheid gemaakt hebben in erosiegevoeligheid tussen gebieden met naaldbomen en
Totstandkomingsproces / GIS-model bij de erosiegevoeligheidskartering. Het GIS-model is zwart weergegeven, de input van de vakspecialist (classificatie) is blauw weergegeven. Bovenaan staat de input, drie bestanden, onderaan de output: de erosiegevoeligheidskaart (zie verder tekst)
gebieden met loofbomen, dan zou de GIS-specialist op zoek moeten naar een andere kaart waar dat onderscheid in bos ook op wordt gemaakt. In het uiterste geval zou de GIS-specialist de vakspecialist / onderzoeker moeten teleurstellen, namelijk, het model moet worden aangepast. Let wel dat is een uiterste redmiddel. Zou de GIS-specialist niet beschikken over een kaart met onderscheid in grasland en akkerland (staat vaak zonder begroeiing!) dat zal er een waardeloze kaart uitkomen, omdat deze erosiegevoeligheid van deze twee klassen ver uiteen ligt. Zou de GIS-specialist echter niet beschikken over een kaart met de ligging van de snelweg, of hij heeft een kaart met bebouwd - waarin snelweg én bebouwig in één klasse vallen - dan is dat voor de onderzoeker waarschijnlijk geen groot probleem; het model maakt dit onderscheid niet. Merk op dat er géén categorie 'geen erosie' is. De vakspecialist heeft onvoldoende vertrouwen in de data om dit te kunnen voorspellen, óf het blijkt dat deze categorie gewoon niet waar te maken is; overal kan nu blijkbaar altijd een beperkte mate van erosie plaats vinden.
NB: De vakspecialist had ook dezelfde persoon kunnen zijn als de GIS-specialist, wanneer deze over de juiste GIS-expertise zou beschikken. Dit komt bij grotere onderzoeksinstituten vaak voor. GIS wordt dan ook vaak op meerdere opleidingen als ondersteunend vak gedoceerd.
  • 3. GEO-INFORMATIE VERZAMELEN
De GIS-specialist moet nu op zoek naar kaarten waarin 'de voorspellers' staan. Dat is een landgebruikskaart en een hellingklassekaart. In de figuur aan het begin van dit hoofdstuk zie je het gebied waar het om gaat, in Zuid-Limburg (Bron: eigen onderzoek 1996, bij het vak 'Hands on GIS', UU, Fac.der Ruimtelijke Wetenschappen). Op basis van een kartering van wegen, het landgebruik en hoogtelijnen is deze landgebruikskaart tot stand gekomen. Het lastige is nu: de GIS-specialist beschikt niet over een hellingklassekaart.
  • 4. GIS-BEWERKING1: INPUT GENEREREN
De Hellingklassen moeten berekend worden. Dat kan op basis van de hoogtelijnen. In het gesprek met de vakspecialist was het ontbreken van de hellingklassenkaart geen probleem, omdat de GIS-specialist al wist dat zo'n kaart relatief eenvoudig te brekenen is op basis van hoogtelijnen. Gebieden tussen hoogtelijnen, en rekeninghoudend met zogenaamde breeklijnen (wegen, rivieren). Dit gaat met een tussenstap. Afhankelijk van de afstand tussen de hoogtelijnen wordt een zogeheten Triangulated Irregular Network (TIN) kaart gemaakt. Dat is een kaart met allemaal driehoeken tussen de hoogtelijnen(punten). Hierbinnen moet dan aangenomen worden dat de hoogte binnen de zo ontstane driehoeken regelmatig afneemt of toeneemt. Voor elke driehoek is dan dus ook de helling te berekenen. In de getoonde groene kaart met driehoeken is een klasse-indeling gemaakt om te kunnen bestuderen of er niet te veel of te grote driehoeken voorkomen met uitzonderlijk lage of hoge hellingsklassen. Deze GIS-bewerking vereist dus zowel GIS-kennis (wat kan er met dit pakker en hoe voer ik dat uit) als GIS-ervaring. Hoe stel in de parameters voor deze GIS-bewerking in. GIS is géén toverdoos en niet elke opmerking als 'dit is dank zij een GIS uit te voeren met één druk op de knop' mag zomaar serieus genomen worden.
Hellingsklassekaart op basis van TIN's, o.b.v. een raster en de uiteindelijke erosiegevoeligheidskaart. Merk op dat de twee linker figuren inhoudelijk exact dezelfde data representeren! (zie verder tekst)
  • 5. GIS-BEWERKING2 CONVERSIE VAN VECTOR NAAR RASTER
De vakspecialist heeft verteld dat er enige onnauwkeurigheid zit in zijn voorspelling. De GIS-specialist kent de onnauwkeurigheid van de landgebruikskaart. Ook de vectordata (TIN-data zijn een vorm van vectordata) is te nauwkeurig gemodelleerd. De GIS-specialist en de vakspecialist bespreken hun ervaringen op dit gebied in een tweede aanvullend gesprek. Er wordt besloten om de hellingklassekaart en de landgebruikerskaart om te zetten naar rasterdata met pixels van 25 bij 25 meter. Die hellingklassekaart is te zien in de blauwe figuur in het midden. Tevens wordt besloten het eindresultaat (de erosiegevoeligheid) niet nauwkeuriger te representeren als met pixels van 50 bij 50 meter. De vakspecialist zal overigens in zijn publicatie gaan opmerken dat het model indicatief is; de pixels die de verschillende erosiegevoeligheden zullen gaan aangeven, zijn niet heilig. Het is en blijft een voorspelling, en het model kan er voor een beperkt deel van het gebied naast zitten. Hiermee is het model niet ongeldig. De GIS-specialist hoeft in dit geval naar de vakspecialist niet zijn vrees uit te spreken dat kaartlezers dit verkeerd kunnen interpreteren. De onderzoeker publiceert richting een goed opgeleid publiek en voorziet de kaart van een voorbehoud.
  • 6. GIS-BEWERKING3: OVERLAY-TECHNIEK EN RECLASSIFICEREN
De input is gereed, dat wil zeggen, twee rasterdatabestanden: de hellingklassekaart en de landgebruikskaart. Beide rasterdatabestanden worden als het ware over elkaar heen gelegd ('overlay'-techniek), waarna van elke pixel van 25 bij 25 meter wordt 'uitgelezen' door de GIS-software, wat het landgebruik is en wat de hellingsklasse is. Deze wordt vertaald naar een erosiegevoeligheid middels de eerder genoemde tabel. Deze techniek heet reclassicificatie. De gemiddelde erosiegevoeligheid van 4 cellen (50 bij 50 meter) wordt weggeschreven in een nieuw rasterdatabestand met de erosiegevoeligheid.
  • 7. REPRESENTATIE: DE KAART
Het laatst genoemde rasterdatabestand kan direct dienen binnen een GIS om er een kaart mee te maken (zie de geel/rode kaart rechts). Voor de kleur rood is gekozen vanwege de alarmerende werking. Veel erosie betekent dat er waarschijnlijk maatregelen moeten worden getroffen, of dat er vaak problemen zijn te verwachten. Geel als lichtere tint én andere kleur vertolkt minder zware risico's. Dergelijke overwegingen komen later in dit handboek aan de orde. Aardig om te constateren. De kleur grijs staat voor nauwelijks erosie. Er kan echter wel degelijk erosie plaatsvinden! De kleur grijs had daarom beter (heel) licht geel kunnen zijn. Grijs 'als kleur' vertolkt in een goede kaart vaak de functie van 'onbepaald', 'geen gegevens bekend'. Wit vertolkt vaak de functie van 'waarde is nul' of 'niet meegenomen in de studie'. Overigens, ook al is de doelgroep niet de lokale bewoners, maar de onderzoeker, dan nog had voor de duidelijkheid een deel van de topografische kaart als referentie moeten dienen. Met andere woorden, de dorpskernen, de namen en een aantal hoofdweg hadden moeten worden toegevoegd voor de oriëntatie.

Informatiesystemen (facultatief)

Als GIS-specialist wil (of moet) je zo goedkoop mogelijk werken. In het voorbeeld van hierboven bleek dat al. Je maakt dus afwegingen tussen zo goed mogelijke kwaliteit en kosten. De minimale nauwkeurigheid uit de opdracht zal centraal staan. De geo-informatie die je aldus verzamelt voor een kaart bestaan al vaak. Het zelf inwinnen is duur. Data snel op straat inwinnen (via lokale bestanden, nieuwskrantjes, vrijwilligers, websites van enthousiastelingen) is gevaarlijk. In de praktijk komen de betere, beschikbare geo-informatie bestanden uit bestaande GIS-modellen. GIS-modellen zijn informatiemodellen met een geografische component / locatie-component. Fysiek gesproken komt (geo-)informatie uit een (geo-)informatiesysteem, maar dat vertolkt in feite een informatiemodel zoals dat is opgesteld binnen een onderzoeksproject of bedrijf. In deze paragraaf wordt verder ingegaan op de herkomst van geo-informatie.

Herkomst van geo-informatie

Jouw geo-informatie kan komen vanuit:

  • bedrijven: die vanuit hun beheerdersrol specifieke geo-informatie bijhouden.
  • onderzoeksprojecten: het gaat hier vaak om zeer gedetailleerde specifieke geo-informatie.
  • Internet: dit is zelf 'te googelen' uit vrij toegankelijke (overheid)sites. Houd wel rekening met eventuele copyrights / licenties
  • commerciële bedrijven: dat betekent inkopen van een commercieel bedrijf dat geo-informatie generiek voor meerdere, algemene toepassingen inwint en verkoopt.
  • eigen inwinning / eigen beheer: denk aan het zelf simpel plaatsen van locaties van
  • alle politiekantoren uit een plaatselijke gouden gids voor een kaart over veiligheid voor een lokale krant
  • monumentale panden uit een eigen inventarisatie
  • kinderdagverblijven of parkeergarages uit een gemeentegids, stadsplattegrond, enzovoort.
  • geocoderen; Adresbestanden kunnen op basis van gemeente, postcode of compleet adres voorzien worden van een coördinaat. Zie ook Geocoderen in Geo-visualisatie/Inleiding Cartografie
  • Eigen beheer: Bestaat de geo-informatie niet, dan zal dit door het bedrijf in kwestie wellicht zelf moeten worden opgestart, inclusief een beheercyclus, om een zekere - gewenste - actualiteit te kunnen waarborgen.

TIP1: Op kaarten zit een copyright. Op feiten, en dus ook de locaties van bepaalde objecten uit kaarten, zit echter géén copyright. Een (topografische) kaart mag dus niet zomaar gekopieerd worden, netzoals (delen van) luchtfoto's. Wel mag je die kaart gebruiken om een selectie van de objecten in eigen kaart te gebruiken, zolang je maar niet (delen van) de kaart gaat overnemen door digitalisering. Raadpleeg altijd de copyrightvoorwaarden, of raadpleeg de uitgever/bron.

TIP1: Wees voor wat betreft de kwaliteit voorzichtig met het overnemen van lokale data van de community, 'open data', data van bepaalde gebruikersgroepen, belangenverenigingen, enzovoort. Deze bestanden kunnen met een beperkte bril, scope of aandachtsgebied tot stand komen. De data is bewust, maar vaker onbewust, voor een beperkt gebied tot stand gekomen. Wanneer een school alle graffiti in een stad in kaart heeft gebracht, zullen graffiti-locaties die zich bevinden tussen de school en de huisadressen van de scholieren over vertegenwoordigd zijn... Wanneer op een dergelijke kaart beslissingen worden genomen, is dit niet bepaald wetenschappelijk verantwoord te noemen. Als GIS-specialist vervul je een bepaalde rol hierin; jíj kennis van de eigenschappen van geo-informatie, jij hebt deze verzameld, jij bent de enige die de bron kan verifiëren. Vertaal dit niet zonder meer één op één over naar de kaartlezer.

Geo-informatie binnen onderzoeksprojecten (facultatief)

Bij een losstaand onderzoek geldt dat de data alléén de onderzoeksdoelstellingen dient te heiligen. Maakt het onderzoek deel uit van een breder onderzoeksprogramma of wordt deze uitgevoerd door een groter onderzoeksinstituut - zoals het CBS, Alterra, RIVM, LNV - dan is de beschikbaarheid van geo-informatie bij het opstarten van het onderzoek of project waarschijnlijk al snel geregeld. Hoe kleiner en specifieker het project, hoe groter de kans dat deze data zelf moet worden ingewonnen of speciaal moet worden aangeschaft. Bij kortdurende projecten zal de geo-informatie waarschijnlijk niet voorzien zijn van een beheercyclus; na verloop van tijd zal die data verouderen.

Onderzoeksdoelstellingen zijn vaak zo specifiek of gedetailleerd, dat hier nieuwe, al of niet geavanceerde GIS-modellen voor worden ontwikkeld. De geo-informatie binnen een dergelijk onderzoeksproject is vaak op projectbasis ingewonnen, specifiek gedefinieerd en daardoor buiten dat onderzoek niet altijd herbruikbaar.

Geo-informatie binnen bedrijven (facultatief)

Door een bedrijfsplan wordt het via missie, visie en strategie duidelijk wat de benodigde bedrijfsmiddelen zijn. GIS en geo-informatie staat niet los van het bedrijfsplan; het dient de missie te ondersteunen, en hoe dun of zwaar een GIS en de bijbehorende geo-informatie er uit zien, wordt bepaald door de (wellicht veranderende) strategie.

Binnen een bedrijf zijn de functionaliteiten van het GIS-model en dus ook de data, idealiter afgeleid van het bedrijfsplan (zie figuur). Te zien is een zogenaamde top-down-benadering. De bovenste drie lagen uit het bedrijfsplan bestaan alleen in de hoofden van de medewerkers, of zijn beschreven op papier. De onderste laag beschrijft de werkelijk tastbare bouwstenen van een bedrijf. Dat zijn de productiemiddelen. Denk aan het gebouw, de medewerkers, de computers en het netwerksysteem, en ook de informatie. Deze productiemiddelen bestaan alleen omdat dit nodig is volgens de lagen erboven; bij een commercieel (of efficiënt gerund) bedrijf zal dus ook het informatiemodel alléén bestaan omdat het iets bijdraagt aan het bedrijfsmodel. Anders zou er sprake zijn van hobbyisme of geldverspilling op informatiegebied. Ook de aanwezige geo-informatie maakt hier deel van uit. De bedrijfsstrategie, visie, normen en waarden (bijvoorbeeld nauwkeurigheid), wijze van aansturen (stuurparameters uit geaggregeerde (geo-)informatie, zij allen hebben dus invloed op het wel of niet voorkomen, de kwaliteit en de kwantiteit van de aanwezige geo-informatie en het gebruikte GIS.

Intermezzo: GROEN VOOR GELD BV: (GIS)Bouwstenen afleiden met behulp van een bedrijfsplan

Een kort voorbeeld verduidelijkt het bovenstaande. GROEN VOOR GELD BV is een bedrijf met de missie: 'Groenbeheer uitvoeren voor gemeenten en waterschappen'.

  • De visie en missie is 'In Noord Nederland binnen drie jaar marktleider, door het opkopen van huidige uitvoerders en netwerken bij de gemeenten. Geld en winst staan voor op, echter dit mag niet ten kosta gaan van een tevreden klant (de gemeente)'.
  • De strategie is: 'jaarlijkse klantenquêtes, cijfers moeten op het niveau van gemeenten helder zijn. Het gaat dan om inzicht in: kosten, opbrengst, tevredenheid, soort groenbeheer. Binnen 3 jaar 10% winst voor elke provincie'. Wanneer dit in detail verder wordt uitgewerkt, door terzake kundigen, blijkt uiteindelijk wat gedurende de eesrte drie jaar de bouwstenen moeten zijn:
  • De bouwstenen zijn: 1 hoofdkantoor, noordelijk gelegen, 3 accountmanagers, 6 regionale groenbedrijven, 1 centrale database, pro-actieve houding van zowel medewerkers op gemeentelijk niveau als de accountmananagers'.


  • Bij het inrichten van de bouwsteen 'centrale database' blijkt uit een adviesrapport dat de centrale database gegevens moet bevatten van het oppervlak dat per gemeente moet worden onderhouden, het soort oppervlak per gemeente, en welke (maai)machines hierop gebruikt kan worden. Dat is onder andere afhankelijk van het oppervlak, de steilheid daarvan (met name bij taluds) en de afstand tot de omwonenden. De afstand tot de omwonenden is nodig om overlast te voorkomen bij het inzetten van het zwaarste, lawaaierige materieel. Ook moet GROEN VOOR GELD BV afspraken die de gemeenten met bedrijven en omwonenden heeft gemaakt vastleggen in die database. Tot slot moeten de medewerkers bij overlast of commentaar op het moment van de klacht dírect met het hoofdkantoor kunnen overleggen. Het hoofdkantoor moet weten waar die klacht zich dan bevind, moet zich kunnn verplaatsen in de situatie ter plekke.
  • Uiteindelijk blijkt daarom de volgende geo-informatie nodig:
  • Topografische kaarten
  • Kadastrale kaarten
  • Vlakken kaart met te onderhouden groengebieden / groenstroken, met daarbij de volgende kenmerken: oppervlak, groenclassificatie (grasveld, ruw gras, berm, sloot, voetbalveld, et cetera) gemiddelde helling, maximale helling, materieel dat daar ingezet kan worden, contactpersoon bij de gemeente, onderhoudsfrequentie, datum laatst gemaaid/onderhouden.
  • Op (Geo)IT gebied (GIS, netwerk, hardware, software) is nodig:
  • On-line verbinding met het Kadaster op het kantoor voor check op eigenaren / omwonenden, alléén bij klachten.
  • Mobiele telefoon met GPS, voor medewerkers ter plaatse, in het geval er klachten zijn.
  • GIS om te berekenen welk materieel op een te onderhouden gebied optimaal kan worden ingezet.

Informatiesystemen die van bedrijfsplannen zijn afgeleid, zijn vaak groot en breed opgezet en dienen gedurende langere tijd flexibel herhaalbaar of vergelijkbare output te kunnen leveren.

Echter, ook geldt dat bedrijven continu in ontwikkeling zijn. Hun visie of strategie wordt gewijzigd of er is behoefte aan andere stuurparameters. Ga er dan niet vanuit dat per direct de systemen, de data en de functionaliteit van applicaties onmiddellijk zijn aangepast. Bijvoorbeeld omdat er nog geen prioriteit voor is gegeven die database uit te breiden of te koppelen. Elke visie- of beleidswijziging heeft zijn tijd nodig om effect te hebben. De cultuur, de systemen en het resultaat hebben tijd nodig om te veranderen. Soms wordt de inwinning, digitalisering of het beheer van geo-informatie te duur geacht, terwijl er wel meer verdiend moet worden met de primaire processen. Bij bedrijven mag echter toch verwacht worden - meer dan bij projecten - dat de geo-informatie die ingekocht wordt, voorzien is van een onderhoudscontract. En dat de geo-informatie die door het bedrijf zelf wordt ingewonnen of beheerd, een bepaalde - op de bedrijfsdoelstellingen afgestemde - revisiecyclus heeft. In die gevallen is de bijdrage van GIS en geo-informatie aan de bedrijfsdoelstellingen 'als smeerolie voor de business' gewaarborgd.

SAMENVATTING: Middels een bedrijfsplan kan bepaald worden welke bouwstenen noodzakelijk zijn. Voor een GIS en geo-informatie geldt dat ook deze afgeleiden zijn van missie, visie en strategie van het bedrijf. Dit kan in detail worden uitgewerkt, al zal praktijkervaring aan moeten geven 'hoe dik' dit moet worden opgepakt om het gewenste effect te bereiken. Na verloop van tijd kunnen andere strategiën, stuurparameters of acties nodig zijn die minder of juist méér GIS en geo-informatie nodig hebben dan enkele jaren daarvoor bedacht is. Bedrijven zijn flexibel, en daarmee dient de ICT (waaronder GIS) dat ook te zijn.

TIP: Zorg dat jouw GIS-afdeling betrokken is/wordt bij niet alleen projecten waarbij 'bouwstenen' worden gewijzigd, maar ook bij momenten waarop missie en strategie worden gewijzigd of besproken. Denk aan contacten met ICT-afdelingen, discussies over informatiebeleid, klantenwens-inventariesties, en dergelijke. GIS en de geo-informatie kan dan sneller inspelen op de nieuwe eisen, en de bijdrage die het levert kan dan direct meegenomen woden in de strategie. GIS is dan niet alleen een 'met de golven meedeinende' bouwsteen, maar levert input voor de strategie.

Gebruik van geo-informatie (facultatief)

Verwacht niet zonder meer dat van elders verkregen geo-informatie gebruikt kan worden voor nieuwe, innovatieve of andere toepassingen dan oorspronkelijk bedoeld.

In de praktijk zal echter toch vaak op al bestaande geo-informatie (hieronder ook genoemd: fysieke databases) worden teruggegrepen. Bijvoorbeeld omwille van snelheid, vanwege de kosten of er is onnadachtzaamheid in het spel. Er wordt dan uit gewoonte gekozen voor een bekende, makkelijk ontsluitbare dataset. Aan jou als GIS-specialist dan dus wel steeds de vraag of deze afkomst van de data de kwaliteit van het onderzoek / de kaart in de weg staat.

Intermezzo: Synnexxion en de concurrent: over nauwkeurigheid van bestanden

Opnieuw een kort voorbeeld. Denk nog eens aan het eerdere voorbeeld uit paragraaf "Toepassingscontext", over het fictieve bedrijf Synnexxion. In dat voorbeeld bleken de aantallen niet nauwkeurig in de database te staan. Dat was strikt genomen ook niet nodig. Synnexxion wil geen accurate databases, maar accuraat vervoer en vooral veel winst. Waarom zou bij een ander busbedrijf met dezelfde missie (namelijk: geld verdienen in het openbaar vervoer) de klantgegevens per stad misschien véél accurater geweest? Dat is héél goed mogelijk. Het antwoord is eenvoudig: Omdat dezelfde missie met een andere strategie wordt uitgewerkt. Wellicht worden noren en waarden als accuraat, klantgericht en professioneel vervoer bij dit tweede bedrijf ook bewust uitgedragen naar en door de databeheerders. De gedachte hierachter is wellicht de overtuiging dat niet alleen buschaueffeurs, maar héél het personeel deze normen moet hebben. Job-rotation en een professionele indruk naar potentiële klanten maken voor dit tweede bedrijf misschien zels wel deel uit van hun marketingstrategie. NB: Géén van beide bedrijven heeft gelijk of ongelijk. Beide bedrijven kunnen met hun verschillende strategie financieel gezond zijn en blijven.

SAMENVATTING: Binnen bedrijven is vaak de aanwezige geo-informatie niet afdoende voor een onderzoeksvraag / kaartverzoek. Wanneer geo-informatie van buiten het bedrijf komt, kan omwille van snelheid, eenvoud of kosten, bewust of onbewust geweld worden gedaan aan de kwaliteit van het eindproduct, de analyse of de kaart. De kaart geeft dan misschien nog wel een antwoord op de onderzoeksvraag, echter, de nauwkeurigheid, compleetheid of actualiteit ervan is misschien lager dan vooraf gehoopt. Dit kan een bewuste keuze zijn.

Gebruik van geo-informatie van belangenverenigingen en 'open geo-informatie'

Belangenverenigingen, lokaal en landelijk, enthousiaste individuen verzamelen steeds meer data. Onder andere doordat van het individu als burger steeds meer verwacht wordt, maar ook omdat hij steeds meer beschikt over de kennis en middelen - zoals GPS - om deze data te verzamelen. Ze proberen op deze wijze grip te krijgen op de wereld om hen heen, op specifieke objecten uit hun aandachtsgebied. Ze gebruiken daarbij (bewust of onbewust) bepaalde, voor de buiten wereld onbekende prioriteiten, definities en gebiedsafbakeningen. Denk onder andere aan [[2]] of lokale belangengroepen uit jouw eigen omgeving. De inspanning wordt onder andere uitgevoerd om (lokale) overheden te voorzien van andere, nieuwe zienswijzen en om de beslissingen te beïnvloeden.

Er zitten twee interessante aspecten aan de geo-informatie die op deze wijze ter beschikking komt.

  1. Voor de (lokale) belangenverenigingen is deze vorm van data verzamelen een een goede ontwikkeling. Het vormt een prachtig middel om hun democratische taak praktisch in te vullen. Op een positieve wijze is het mogelijk om de overheid en de informatie die de overheid gebruikt te beïnvloeden. Er wordt tegenwicht geboden daar waar de overheid te traag wordt geacht, of wellicht 'slechts' gebruik maakt van landelijke, altijd weer dezelfde misschien verouderde bestanden en (landelijk opererende) (GIS) adviesbureau's. Omdat deze belangenorganisaties wél de tijd en energie (en soms: ook meer kennis) hebben, krijgen zij in kaart, actueler en specifieker, wat anders niet zichtbaar zou zijn voor de burger en de overheid. Wanneer GIS en GIS-kennis aan deze initiatieven kunnen worden toegevoegd, hebben deze organisaties een visueel sterk middel in handen om de publieke opinie en de politiek constructief en op argumenten te beïnvloeden.
  2. Er zit ook een andere kant aan deze 'democratisering', misschien wel een 'keerzijde' volgens sommige GIS-specialisten en overheden. De vraag is namelijk of deze nieuwe manier van data verzamelen zonder meer een aanvulling kan zijn voor bestaande, vaak meer landelijk of meer gebieds-dekkende geo-informatie. Wanneer die bestanden actueler zijn, is er de neiging om die direct maar over te nemen. Echter, wanneer - zoals eerder genoemd - die nieuwe bestanden met een beperkere scope, definitie, aandachtsgebied of te verspreid tot stand zijn gekomen, mag er aan getwijfeld worden. Zeker bij kleine aantallen; dan speelt "de macht van het kleine getal".

De macht van het kleine getal

Bij het trekken van conclusies op basis van kaarten geldt hetzelfde als bij het trekken van conclusies op basis van andere media. Er moet voorzichtig worden omgesprongen bij onvolledige of niet juist ingewonnen data. Zeker wanneer een kaart gemaakt wordt op basis van een beperkt onderzoek, of een beperkte hoeveelheid data (zie ook de vorige paragraaf). Staat er een beperkte selectie van de werkelijkheid op een kaart, of er zijn nu eenmaal weinig voorvallen gekarteerd, dan is er de kans dat de beslissing of het inzicht die volgt uit een kaart, bepaald wordt door wat men noemt 'de macht van het kleine getal' of 'overhaaste generalisatie' (zie ook [De macht van het kleine getal]).

Ruimtelijke gegevensmodellering (facultatief)

Het ontwerpen van een model voor een (geografisch) informatiesysteem zal jij waarschijnlijk niet vaak gaan doen. Het GIS-model bestaat vaak al, zoals hierboven beschreven. Je maakt er als GIS-specialist gebruik van, of je krijgt de kans hem (mede) te ontwerpen of deze te actualiseren. Vandaar de volgende uitwijding over gegevensmodellering. Als eerste een afbeelding met wat terminologie. Zoals te zien is, is het fysieke model een beperking van de werkelijkheid; iets dat we ook al zagen in de eerste hoofdstukken van dit theoretische deel.

Beschrijving van en voorbeelden bij de relaties tussen de ruimtelijke logische-, conceptuele- en gegevensmodellen. Conclusie is dat goed nagedacht moet worden over het model; als de toepassingcontext wijzigt / verbreedt, zijn wellicht achteraf grote aanpassingen nodig.

In bovenstaande figuur (naar: [4]) een voorbeeld van hoe Ruimtelijke gegevensmodellering is op te vatten.

Ruimtelijke modellering wijkt in principe niet af van 'gewone' modellering, zij het dat nu met een ruimtelijke factor om moet worden gegaan. Daardoor zijn relaties, afhankelijkheden en benodigde data anders, is de functionaliteit eenvoudiger of met meer mogelijkheden in te richten. De database is eenvoudiger te modelleren, dan wanneer dit model puur relationeel en buiten een GIS om zou zijn gemodelleerd. (Dit is een rol die jij als GIS-specialist zou kunnen opnemen; adviseren over hoe dit anders / beter kan.) Het model is daarna te vertalen naar een fysiek gegevensmodel. Een fysiek gegevensmodel is in feite een verzameling (database) met tabellen (of serie bestanden) met een onderlinge, vastgelegde relatie.

Te zien is dat - afhankelijk van de toepassingscontext - verschillend naar de werkelijkheid gekeken wordt. Afhankelijk van die kijk komt een verschillend fysiek (GIS-) model tot stand. In het ene geval worden wegen als lijnen gedefinieerd (zie de figuur: met 1) aangegeven), en in het andere geval worden de wegen gezien als vlakken, omdat men de rijbanen als een te onderhouden oppervlak wil kunnen zien (zie de figuur: met 2) aangegeven).

Het ontwerpen van een Fysiek Model wordt iets eenvoudiger voorgesteld door het volgende plaatje. Is het Fysiek Model eenmaal vormgegeven, dan bestaat dit uit geo-informatie in een database of serie bestanden, met onderlinge relaties en afhankelijkheden.

Hoe een (geo-) database idealiter tot stand komt. De business, oftewel de primaire processen van een bedrijf, vastgelegd in een zogenaamd Conceptueel Model, bepaalt via het Logisch Model (hoe men werkt of wenst te gaan werken) welke geo-informatie nodig is ten behoeve van het Fysieke Model.

Is het Fysieke Model bepaald, dan kan de fysieke database gebouwd en vervolgens gevuld worden, met de benodigde software (GIS) er omheen.

SAMENVATTING: Een fysieke database kan alleen optimaal functioneren indien het (nog steeds) is afgestemd op het Conceptueel Model: de business. Een fysieke database kan alleen gebouwd worden (of effectief aangepast worden) als het Business Model bekend is. Voor kleinere omgevingen geldt dit ook: een fysiek GIS-model is alleen op te zetten als bekend is welke onderzoeksvragen beantwoord dienen te worden en welke kaarten geproduceerd moeten worden.

TIP: Zomaar kijken welke databases / geo-informatie je voorhanden hebt - en deze vervolgens gebruiken - is gevaarlijk. Zonder kennis van wat hierboven als informatiegrammatica wordt genoemd - de regels en definities die binnen het bedrijf of bij de data horen - is er een goede kaart of analyse alleen 'op goed geluk' te maken. Bespreek als GIS-specialist met de kenners van de data, het businessproces en/of de leverancier/beheerder van de data ('wat wordt verstaan onder een weg, onder een wegvak, enzovoort'. De visualisatie ervan zal dan eerder juist zijn.

Referenties

  1. Erosiegevoeligheidskartering met behulp van Geografische Informatie Systemen; B. van der Grift en T.C. Nijeholt, 1996
  2. Erosiegevoeligheidskartering met behulp van Geografische Infromatie Systemen; B. van der Grift en T.C. Nijeholt, 1996
  3. 'Bodemerosie en Wateroverlast in Zuid-Limburg' (Helm, P.P.M. van der, A.P.J. de Roo en R. Huigen (1989); komt overeen met Hoofdstuk 4 uit Syllabus KIHO, Faculteit der Ruimtelijke Wetenschapen, Universiteit Utrecht, Erpers Roijaards, T.van en M. Zeylmans van Emmichoven, 1996)
  4. P. Hendriks en H. Ottens; Geografische Informatie Systemen in ruimtelijk onderzoek , Van Gorcum Assen 1997, fig 2.1, pag 21.

Literatuur

Zie voor literatuur: het laatste deel van dit handboek.

Informatie afkomstig van https://nl.wikibooks.org Wikibooks NL.
Wikibooks NL is onderdeel van de wikimediafoundation.