Naar inhoud springen

Sjabloon:Tabel Exact/Elektronenaffiniteit Meer-atomige deeltjes

Uit Wikibooks

Sjabloondocumentatie

Deze tabel is als sjabloon gemaakt om hem in meerdere boeken te kunnen gebruiken. Kijk met de knop "Links naar deze pagina" welke boeken/pagina's dat zijn.

Dit sjabloon bevat een lijst met elektronenaffiniteiten van een aantal meer-atomige deeltjes. Neem deze lijst in een pagina op door de tekst

{{Tabel Exact/Elektronenaffiniteit Meer-atomige deeltjes}}

in de brontekst van de pagina te plaatsen. Het resultaat wordt:

De elektronenaffiniteiten, Eea, van een aantal moleculaire deeltjes zijn in onderstaande tabel weergegeven, gesorteerd op massa van de deeltjes. Door Rienstra-Kiracofe etal is een meer uitgebreide lijst samengesteld.[1]. De elektronenaffiniteit van de radicalen en zijn van alle moleculaire affiniteiten het nauwkeurigst bekend.

Molecuul Naam Massa Eea (eV) Eea (kJ/mol) Referenties
Di-atomaire deeltjes
16OH Hydroxyl 17,0068 1,827 6488(11) 176,3413(2) [2]
16OD 18,0131 1,825 53(4) 176,137(5) [3]
C2 Dikoolstof 24,0000 3,269(6) 315,4(6) [4]
CN Cyanoradicaal 26,0067 3,862(4) 372,6263 [5]
BO Boor(II)oxide 26,8100 2,508(8) 242,0(8) [6]
NO Stikstofmonoxide 30,0057 0,026(5) 2,5(5) [7]
O2 Dizuurstof 31,9980 0,450(2) 43,42(20) [8]
32SH Sulfhydryl 32,9799 2,314 7283(17) 223,3373(2) [9]
F2 Difluor 37,9968 3,08(10) 297(10) [10]
LiCl Lithiumchloride 42,3940 0,593(10) 57,2(10) [11]
Cl2 Dichloor 70,9060 2,35(8) 227(8) [10]
FeO IJzer(II)oxide 71,8440 1,4950(5) 144,25(6) [12]
Br2 Dibroom 159,8080 2,53(8) 244(8) [10]
IBr joodmonobromide 206,8085 2,512(3) 242,4(4) [13]
I2 Di-jood 253,8090 2,524(5) 243,5(5) [14]
Tri-atomaire deeltjes
NO2 Stikstofdioxide 46,0047 2,273(5) 219,3(5) [15]
O3 Ozon 47,9970 2,1028(25) 202,89(25) [16]
SO2 Zwaveldioxide 63,9701 1,107(8) 106,8(8) [17]
Grotere poly-atomaire deeltjes
CH2CHO Vinyloxy 43,0225 1,8248(+2-6) 176,07(+3-7) [18]
CH3NO2 Nitromethaan 61,0282 0,172(6) 16,6(6) [19]
HNO3 Salpeterzuur 63,0115 0,57(15) 55(14) [10]
BF3 Boortrifluoride 67,8062 2,65(10) 256(10) [20]
C6H6 Benzeen 78,0470 −0,70(14) −68(14) [21]
C6H4O2 1,4-Benzochinon 108,0293 1,860(5) 179,5(6) [22]
C2(CN)4 Tetracyano-etheen 128,0268 3,17(20) 306(20) [23]
SF6 Zwavelhexafluoride 145,9625 1,03(5) 99,4(49) [24]
POCl3 Fosforylchloride 153,3318 1,41(20) 136(20) [25]
WF6 Wolfraam(VI)fluoride 297,8304 3,5(1) 338(10) [26]
UF6 Uraniumhexafluoride 352,0204 5,06(20) 488(20) [27]
C60 Buckminsterfullereen 720,0000 2,6835(6) 258,92(6) [28]
  1. Rienstra-Kiracofe, J.C.; Tschumper, G.S.; Schaefer, H.F.; Nandi, S.; Ellison, G.B. (2002). Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations 102 (1): 231–282. PMID: 11782134. DOI: 10.1021/cr990044u.
  2. Goldfarb, F.; Drag, C.; Chaibi, W.; Kröger, S.; Blondel, C.; Delsart, C. (2005). Photodetachment microscopy of the P, Q, and R branches of the OH(v=0) to OH(v=0) detachment threshold. J. Chem. Phys. 122 (1): 014308. PMID: 15638660. DOI: 10.1063/1.1824904.
  3. Schulz, P.A.; Mead, R.D.; Jones, P.L.; Lineberger, W.C. (1982). OH and OD threshold photodetachment. J. Chem. Phys. 77 (3): 1153. DOI: 10.1063/1.443980.
  4. Ervin, K.M.; Lineberger, W.C. (1991). Photoelectron spectra of and . J. Phys. Chem. 95 (3): 1167. DOI: 10.1021/j100156a026.
  5. Bradforth, Stephen E.; Kim, Eun Ha; Arnold, Don W.; Neumark, Daniel M. (15 januari 1993). Photoelectron spectroscopy of CN−, NCO−, and NCS−. The Journal of Chemical Physics 98 (2): 800–810 (AIP Publishing). ISSN: 0021-9606. DOI: 10.1063/1.464244.
  6. Wenthold, P.G.; Kim, J.B.; Jonas, K.-L.; Lineberger, W.C. (1997). An Experimental and Computational Study of the Electron Affinity of Boron Oxide. J. Phys. Chem. A 101 (24): 4472. DOI: 10.1021/jp970645u.
  7. Travers, M.J.; Cowles, D.C.; Ellison, G.B. (1989). Reinvestigation of the electron affinities of O2 and NO. Chem. Phys. Lett. 164 (5): 449. DOI: 10.1016/0009-2614(89)85237-6.
  8. Schiedt, J.; Weinkauf, R. (1995). Spin-orbit coupling in the anion. Z. Naturforsch. A 50 (11): 1041. DOI: 10.1515/zna-1995-1110.
  9. Chaibi, W.; Delsart, C.; Drag, C.; Blondel, C. (2006). High precision measurement of the 32SH electron affinity by laser detachment microscopy. J. Mol. Spectrosc. 239 (1): 11. DOI: 10.1016/j.jms.2006.05.012.
  10. 10,0 10,1 10,2 10,3 Janousek, Bruce K.; Brauman, John I. (1979). Gas Phase Ion Chemistry 2: 53 (Academic Press).
  11. Miller, T.M.; Leopold, D.G.; Murray, K.K.; Lineberger, W.C. (1986). Electron affinities of the alkali halides and the structure of their negative ions. J. Chem. Phys. 85 (5): 2368. DOI: 10.1063/1.451091.
  12. Kim, J.B.; Weichman, M.L.; Neumark, D.M. (2015). Low-lying states of FeO and FeO by slow photoelectron spectroscopy. Mol. Phys. 113 (15–16): 2105. DOI: 10.1080/00268976.2015.1005706.
  13. Sheps, L.; Miller, E.M.; Lineberger, W.C. (2009). Photoelectron spectroscopy of small IBr(CO2)n(n=0–3) cluster anions. J. Chem. Phys. 131 (6): 064304. PMID: 19691385. DOI: 10.1063/1.3200941.
  14. Zanni, M.T.; Taylor, T.R.; Greenblatt, B.J.; Soep, B.; Neumark, D.M. (1997). Characterization of the anion ground state using conventional and femtosecond photoelectron spectroscopy. J. Chem. Phys. 107 (19): 7613. DOI: 10.1063/1.475110.
  15. Ervin, K.M.; Ho, J.; Lineberger, W.C. (1988). Ultraviolet photoelectron spectrum of nitrite anion. J. Phys. Chem. 92 (19): 5405. DOI: 10.1021/j100330a017.
  16. Novick, S.E.; Engelking, P.C.; Jones, P.L.; Futrell, J.H.; Lineberger, W.C. (1979). Laser photoelectron, photodetachment, and photodestruction spectra of O3. J. Chem. Phys. 70 (6): 2652. DOI: 10.1063/1.437842.
  17. Nimlos, Mark R.; Ellison, G. Barney (1986). Photoelectron spectroscopy of sulfur-containing anions , and ). J. Phys. Chem. 90 (12): 2574. DOI: 10.1021/j100403a007.
  18. Mead, R.D.; Lykke, K.R.; Lineberger, W.C.; Marks, J.; Brauman, J.I. (1984). Spectroscopy and dynamics of the dipole-bound state of acetaldehyde enolate. J. Chem. Phys. 81 (11): 4883. DOI: 10.1063/1.447515., gevonden via: Rienstra-Kiracofe, J.C.; Tschumper, G.S.; Schaefer, H.F.; Nandi, S.; Ellison, G.B. (2002). Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations 102 (1): 231–282. PMID: 11782134. DOI: 10.1021/cr990044u.
  19. Adams, C.L.; Schneider, H.; Ervin, K.M.; Weber, J.M. (2009). Low-energy photoelectron imaging spectroscopy of nitromethane anions: Electron affinity, vibrational features, anisotropies, and the dipole-bound state. J. Chem. Phys. 130 (7): 074307. PMID: 19239294. DOI: 10.1063/1.3076892.
  20. Page, F. M.; Goode, G. C. (1969). Negative ions and the magnetron (John Wiley & Sons). NB.: According to NIST as concerns Boron trifluoride, the Magnetron method, lacking mass analysis, is not considered reliable.
  21. Ruoff, R.S.; Kadish, K.M.; Boulas, P.; Chen, E.C.M. (1995). Relationship between the Electron Affinities and Half-Wave Reduction Potentials of Fullerenes, Aromatic Hydrocarbons, and Metal Complexes. J. Phys. Chem. 99 (21): 8843. DOI: 10.1021/j100021a060.
  22. Schiedt, J.; Weinkauf, R. (1999). Resonant photodetachment via shape and Feshbach resonances: p-benzoquinone anions as a model system. J. Chem. Phys. 110 (1): 304. DOI: 10.1063/1.478066.
  23. Chowdhury, S.; Kebarle, P. (1986). Electron affinities of di- and tetracyanoethylene and cyanobenzenes based on measurements of gas-phase electron-transfer equilibria. J. Am. Chem. Soc. 108 (18): 5453. DOI: 10.1021/ja00278a014.
  24. Troe, J.; Miller, T.M.; Viggiano, A.A. (2012). Communication:Revised electron affinity of SF6 from kinetic data. J. Chem. Phys. 136 (2): 121102. PMID: 22462826. DOI: 10.1063/1.3698170.
  25. Mathur, B.P.; Rothe, E.W.; Tang, S.Y.; Reck, G.P. (1976). Negative ions from phosphorus halides due to cesium charge exchange. J. Chem. Phys. 65 (2): 565. DOI: 10.1063/1.433109.
  26. George, P.M.; Beauchamp, J.L. (1979). The electron and fluoride affinities of tungsten hexafluoride by ion cyclotron resonance spectroscopy. Chem. Phys. 36 (3): 345. DOI: 10.1016/0301-0104(79)85018-1.
  27. NIST chemistry webbook, gevonden via: Borshchevskii, A.Ya.; Boltalina, O.V.; Sorokin, I.D.; Sidorov, L.N. (1988). Thermochemical quantities for gas-phase iron, uranium, and molybdenum fluorides, and their negative ions. J. Chem. Thermodyn. 20 (5): 523. DOI: 10.1016/0021-9614(88)90080-8.
  28. Huang, Dao-Ling; Dau, Phuong Diem; Liu, Hong-Tao; Wang, Lai-Sheng (2014). High-resolution photoelectron imaging of cold anions and accurate determination of the electron affinity of C60. J. Chem. Phys. 140 (22): 224315. PMID: 24929396. DOI: 10.1063/1.4881421.
Informatie afkomstig van Wikibooks NL,
een onderdeel van de Wikimedia Foundation.