Sjabloon:Tabel Exact/Elektronenaffiniteit Elementen
Uiterlijk
Deze tabel is als sjabloon gemaakt om hem in meerdere boeken te kunnen gebruiken. Kijk met de knop "Links naar deze pagina" welke boeken/pagina's dat zijn.
Dit sjabloon bevat een lijst met elektronenaffiniteiten van de elementen Neem deze lijst in een pagina op door de tekst
{{Tabel Exact/Elektronenaffiniteit Elementen}}
in de brontekst van de pagina te plaatsen. Het resultaat wordt:
Elektronenaffiniteiten van de elementen.[1]
- Het cijfer tussen haakjes geeft de betrouwbaarheid van het laatste cijfer in de waarde.
- † In 2025 bleek dat elektronaffiniteit ook gevoelig is voor kwantum-effecten,[2] wat een herziening van de met een "†" gemerkte waarden tot gevolg kan hebben. De herziening heeft een verlaging met ongeveer 20 μeV (2 J/mol) tot gevolg.
| Z | Element | Naam | Elektronaffiniteit (eV) | Elektronaffiniteit (kJ/mol) | Referentie |
|---|---|---|---|---|---|
| 1 | 1H | Waterstof | 0,754 195(19) | 72,769(2) | [3] |
| 1 | 2H | Deuterium | 0,754 67(4) | 72,814(4) | [4] |
| 2 | He | Helium | −0,5(2) | −48(20) | Geschat[5] |
| 3 | Li | Lithium | 0,618 049(22) | 59,632 6(21) | [6] |
| 4 | Be | Beryllium | −0,5(2) | −48(20) | Geschat[5] |
| 5 | B | Boor | 0,279 723(25) | 26,989(3) | [7] |
| 6 | 12C | Koolstof | 1,262 122 6(11) | 121,776 3(1) | [7] |
| 6 | 13C | Koolstof | 1,262 113 6(12) | 121,775 5(2) | [8] |
| 7 | N | Stikstof | −0,07 | −6,8 | [5] |
| 8 | 16O | Zuurstof | 1,461 112 97(9) | 140,975 970(9) | [9] |
| 8 | 17O | Zuurstof | 1,461 108(4) | 140,975 5(3) | [10] |
| 8 | 18O | Zuurstof | 1,461 105(3) | 140,975 2(3) | [10] |
| 9 | F | Fluor | 3,401 189 8(24) | 328,164 9(3) | [11][12] |
| 10 | Ne | Neon | −1,2(2) | −116(19) | Geschat[5] |
| 11 | Na | Natrium | 0,547 926(25) | 52,867(3) | [13] |
| 12 | Mg | Magnesium | −0,4(2) | −40(19) | Geschat[5] |
| 13 | Al | Aluminium | 0,432 83(5) | 41,762(5) | [14] |
| 14 | Si | Silicium | 1,389 521 2(8) | 134,068 4(1) | [15] |
| 15 | P | Fosfor | 0,746 609(11) | 72,037(1) | [16] |
| 16 | 32S | Zwavel | 2,077 104 2(6) | 200,410 1(1) | [15] |
| 16 | 34S | Zwavel | 2,077 104 5(12) | 200,410 1(2) | [17] |
| 17 | Cl | Chloor | 3,612 725(28) | 348,575(3) | [18] |
| 18 | Ar | Argon | −1,0(2) | −96(20) | Geschat[5] |
| 19 | K | Kalium | 0,501 459(13) | 48,383(2) | [19] |
| 20 | Ca | Calcium | 0,024 55(10) | 2,37(1) | [20] |
| 21 | Sc | Scandium | 0,179 380(23)† | 17,307 6(22) | [21] |
| 22 | Ti | Titanium | 0,075 54(5)† | 7,289(5) | [22] |
| 23 | V | Vanadium | 0,527 66(20)† | 50,911(20) | [23] |
| 24 | Cr | Chroom | 0,675 928(27)† | 65,217 2(26) | [21] |
| 25 | Mn | Mangaan | −0,5(2) | −50(19) | Geschat[5] |
| 26 | Fe | IJzer | 0,153 236(35)† | 14,785(4) | [24] |
| 27 | Co | Kobalt | 0,662 255(47)† | 63,897 9(45) | [25] |
| 28 | Ni | Nikkel | 1,157 16(12) | 111,65(2) | [26] |
| 29 | Cu | Koper | 1,235 78(4) | 119,235(4) | [27] |
| 30 | Zn | Zink | −0,6(2) | −58(20) | Geschat[5] |
| 31 | Ga | Gallium | 0,301 166(15)† | 29,058 1(15) | [28] |
| 32 | Ge | Germanium | 1,232 676 4(13) | 118,935 2(2) | [29] |
| 33 | 75As | Arseen | 0,804 486(3) | 77,621 1(3) | [2] |
| 34 | Se | Seleen | 2,020 604 7(12) | 194,958 7(2) | [30] |
| 35 | Br | Broom | 3,363 588(3) | 324,536 9(3) | [11] |
| 36 | Kr | Krypton | −1,0(2) | −96(20) | Geschat[5] |
| 37 | Rb | Rubidium | 0,485 916(21) | 46,884(3) | [31] |
| 38 | Sr | Strontium | 0,052 06(6) | 5,023(6) | [32] |
| 39 | Y | Yttrium | 0,311 29(22)† | 30,035(21) | [21] |
| 40 | Zr | Zirkonium | 0,433 28(9)† | 41,806(9) | [33] |
| 41 | Nb | Niobium | 0,917 40(7)† | 88,516(7) | [34] |
| 42 | Mo | Molybdeen | 0,747 23(8)† | 72,097(8) | [21] |
| 43 | Tc | Technetium | 0,55(20) | 53(20) | Geschat[35] |
| 44 | Ru | Ruthenium | 1,046 27(2)† | 100,950(3) | [21] |
| 45 | Rh | Rodium | 1,142 89(20) | 110,27(2) | [26] |
| 46 | Pd | Palladium | 0,562 14(12) | 54,24(2) | [26] |
| 47 | Ag | Zilver | 1,304 47(3) | 125,862(3) | [27] |
| 48 | Cd | Cadmium | −0,7(2) | −68(20) | Geschat[5] |
| 49 | In | Indium | 0,383 92(6) | 37,043(6) | [36] |
| 50 | Sn | Tin | 1,112 070(2) | 107,298 4(3) | [37] |
| 51 | Sb | Antimony | 1,047 401(19) | 101,059(2) | [38] |
| 52 | Te | Telluur | 1,970 875(7) | 190,161(1) | [39] |
| 53 | 127I | Jodium | 3,059 046 5(37) | 295,153 1(4) | [40] |
| 53 | 128I | Jodium | 3,059 052(38) | 295,154(4) | [41] |
| 54 | Xe | Xenon | −0,8(2) | −77(20) | Geschat[5] |
| 55 | Cs | Cesium | 0,4715983(38) | 45,5023(4) | [42] |
| 56 | Ba | Barium | 0,144 62(6) | 13,954(6) | [43] |
| 57 | La | Lanthaan | 0,557 546(20)† | 53,795(2) | [44] |
| 58 | Ce | Cerium | 0,600 160(27)† | 57,906 7(26) | [45] |
| 59 | Pr | Praseodymium | 0,109 23(46)† | 10,539(45) | [46] |
| 60 | Nd | Neodymium | 0,097 49(33)† | 9,406(32) | [46] |
| 61 | Pm | Promethium | 0,129 | 12,45 | [47] |
| 62 | Sm | Samarium | 0,162 | 15,63 | [48] |
| 63 | Eu | Europium | 0,116(13) | 11,2(13) | [48] |
| 64 | Gd | Gadolinium | 0,212(30)† | 20,5(29) | [21] |
| 65 | Tb | Terbium | 0,131 31(80)† | 12,670(77) | [46] |
| 66 | Dy | Dysprosium | 0,015(3) | 1,45(30) | [49] |
| 67 | Ho | Holmium | 0,338 | 32,61 | [47] |
| 68 | Er | Erbium | 0,312 | 30,10 | [47] |
| 69 | Tm | Thulium | 1,029(22) | 99(3) | [50] |
| 70 | Yb | Ytterbium | −0,02 | −1,93 | Geschat[35] |
| 71 | Lu | Lutetium | 0,238 8(7)† | 23,04(7) | [51] |
| 72 | Hf | Hafnium | 0,178 0(7)† | 17,18(7) | [52] |
| 73 | Ta | Tantaal | 0,328 859(23)† | 31,730 1(22) | [21] |
| 74 | W | Wolfraam | 0,816 500(82)† | 78,780 3(80) | [21] |
| 75 | Re | Renium | 0,060 396(64)† | 5,827 3(62) | [53] |
| 76 | Os | Osmium | 1,077 661(24)† | 103,978 5(24) | [21] |
| 77 | Ir | Iridium | 1,564 057(12)† | 150,908 6(12) | [54] |
| 78 | Pt | Platina | 2,125 10(5) | 205,041(5) | [55] |
| 79 | Au | Goud | 2,308 610(25) | 222,747(3) | [56] |
| 80 | Hg | Kwik | −0,5(2) | −48(20) | Geschat[5] |
| 81 | Tl | Thallium | 0,320 053(19) | 30,880 4(19) | [57] |
| 82 | Pb | Lood | 0,356 721(2) | 34,418 3(3) | [58] |
| 83 | Bi | Bismut | 0,942 362(13) | 90,924(2) | [59] |
| 84 | Po | Polonium | 1,40(7) | 136(7) | Berekend[60] |
| 85 | At | Astaat | 2,415 78(7) | 233,087(8) | [61] |
| 86 | Rn | Radon | −0,7(2) | −68(20) | Geschat[5] |
| 87 | Fr | Francium | 0,486 | 46,89 | Geschat[62][35] |
| 88 | Ra | Radium | 0,10 | 9,648 5 | Geschat[63][35] |
| 89 | Ac | Actinium | 0,35 | 33,77 | Geschat[35] |
| 90 | Th | Thorium | 0,607 69(6)† | 58,633(6) | [64] |
| 91 | Pa | Protactinium | 0,55 | 53,03 | Geschat[65] |
| 92 | U | Uranium | 0,314 97(9)† | 30,390(9) | [66] |
| 93 | Np | Neptunium | 0,48 | 45,85 | Geschat[65] |
| 94 | Pu | Plutonium | −0,50 | −48,33 | Geschat[65] |
| 95 | Am | Americium | 0,10 | 9,93 | Geschat[65] |
| 96 | Cm | Curium | 0,28 | 27,17 | Geschat[65] |
| 97 | Bk | Berkelium | −1,72 | −165,24 | Geschat[65] |
| 98 | Cf | Californium | −1,01 | −97,31 | Geschat[65] |
| 99 | Es | Einsteinium | −0,30 | −28,60 | Geschat[65] |
| 100 | Fm | Fermium | 0,35 | 33,96 | Geschat[65] |
| 101 | Md | Mendelevium | 0,98 | 93,91 | Geschat[65] |
| 102 | No | Nobelium | −2,33 | −223,22 | Geschat[65] |
| 103 | Lr | Lawrencium | −0,31 | −30,04 | Geschat[65] |
| 111 | Rg | Röntgenium | 1,565 | 151,0 | Berekend[67] |
| 113 | Nh | Nihonium | 0,69 | 66,6 | Berekend[68] |
| 115 | Mc | Moscovium | 0,366 | 35,3 | Berekend[68] |
| 116 | Lv | Livermorium | 0,776 | 74,9 | Berekend[68] |
| 117 | Ts | Tennessine | 1,719 | 165,9 | Berekend[68] |
| 118 | Og | Oganesson | 0,080(6) | 7,72(58) | Berekend[69] |
| 119 | Uue | Ununennium | 0,662 | 63,87 | Berekend[62] |
| 120 | Ubn | Unbinilium | 0,021 | 2,03 | Berekend[70] |
| 121 | Ubu | Unbiunium | 0,57 | 55 | Berekend[35] |
- ↑ De gegevens zijn een kopie van de waarden zoals die op 29 maart 2025 in de Nederlandse Wikipedia aanwezig waren. Op hun beurt waren die gegevens ontleend aan de Engelse Wikipedia (zie de verwijzing in Wikipedia).
- ↑ 2,0 2,1 Blondel, C.; Drag, C. (2025). Quantum Offset of Velocity Imaging-Based Electron Spectrometry and the Electron Affinity of Arsenic. Phys. Rev. Lett. 134: 043001. DOI: 10.1103/PhysRevLett.134.043001.
- ↑ Lykke, K.R.; Murray, K.K.; Lineberger, W.C. (1991). Threshold Photodetachment of H−. Phys. Rev. A 43 (11): 6104–7. PMID: 9904944. DOI: 10.1103/PhysRevA.43.6104.
- ↑ Beyer, M.; Merkt, F. (2018). Communication: Heavy-Rydberg states of HD and the electron affinity of the deuterium atom. J. Chem. Phys. 149: 031102. DOI: 10.1063/1.5043186.
- ↑ 5,00 5,01 5,02 5,03 5,04 5,05 5,06 5,07 5,08 5,09 5,10 5,11 5,12 Bratsch, S.G.; Lagowski, J.J. (1986). Predicted stabilities of monatomic anions in water and liquid ammonia at 298.15 K.. Polyhedron 5 (11): 1763–1770. DOI: 10.1016/S0277-5387(00)84854-8.
- ↑ Haeffler, G.; Hanstorp, D.; Kiyan, I.; Klinkmüller, A.E.; Ljungblad, U.; Pegg, D.J. (1996). Electron affinity of Li: A state-selective measurement. Phys. Rev. A 53 (6): 4127–31. PMID: 9913377. DOI: 10.1103/PhysRevA.53.4127.
- ↑ 7,0 7,1 Scheer, M.; Bilodeau, R.C.; Haugen, H.K. (1998). Negative ion of boron: An experimental study of the 3P ground state. Phys. Rev. Lett. 80 (12): 2562–65. DOI: 10.1103/PhysRevLett.80.2562.
- ↑ Bresteau, D.; Drag, C.; Blondel, C. (2016). Isotope shift of the electron affinity of carbon measured by photodetachment microscopy. Phys. Rev. A 93 (1): 013414. DOI: 10.1103/PhysRevA.93.013414.
- ↑ Kristiansson, M.K.; Chartkunchand, K.; Eklund, G. (2022). High-precision electron affinity of oxygen. Nat Commun 13 (1): 5906. PMID: 36207329. PMC: 9546871. DOI: 10.1038/s41467-022-33438-y.
- ↑ 10,0 10,1 Blondel, C.; Delsart, C.; Valli, C.; Yiou, S.; Godefroid, M.R.; Van Eck, S. (2001). Electron affinities of 16 O, 17 O, 18 O, the fine structure of 16O−, and the hyperfine structure of 17O−.. Phys. Rev. A 64 (5): 052504. DOI: 10.1103/PhysRevA.64.052504.
- ↑ 11,0 11,1 Blondel, C.; Cacciani, P.; Delsart, C.; Trainham, R. (1989). High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams. Phys. Rev. A 40 (7): 3698–3701. PMID: 9902584. DOI: 10.1103/PhysRevA.40.3698.
- ↑ Blondel, C.; Delsart, C.; Goldfarb, F. (2001). Electron spectrometry at the μeV level and the electron affinities of Si and F. Journal of Physics B 34: L281–88. DOI: 10.1088/0953-4075/34/9/101.
- ↑ Hotop, H.; Lineberger, W.C. (1985). Binding energies in atomic negative ions. II. J. Phys. Chem. Ref. Data 14 (3): 731. DOI: 10.1063/1.555735.
- ↑ Scheer, M.; Bilodeau, R.C.; Thøgersen, J.; Haugen, H.K. (1998). Threshold Photodetachment of Al−: Electron Affinity and Fine Structure. Phys. Rev. A 57 (3): R1493–96. DOI: 10.1103/PhysRevA.57.R1493.
- ↑ 15,0 15,1 Chaibi, W.; Peláez, R.J.; Blondel, C.; Drag, C.; Delsart, C. (2010). Effect of a magnetic field in photodetachment microscopy. Eur. Phys. J. D 58 (1): 29. DOI: 10.1140/epjd/e2010-00086-7.
- ↑ Peláez, R.J.; Blondel, C.; Vandevraye, M.; Drag, C.; Delsart, C. (2011). Photodetachment microscopy to an excited spectral term and the electron affinity of phosphorus. J. Phys. B: At. Mol. Opt. Phys. 44 (19): 195009. DOI: 10.1088/0953-4075/44/19/195009.
- ↑ Carette, T.; Drag, C.; Scharf, O.; Blondel, C.; Delsart, C.; Fischer, C. (2000). F. & Godefroid M. (2010). Isotope shift in the sulfur electron affinity: Observation and theory. Phys. Rev. A 81: 042522. DOI: 10.1103/PhysRevA.81.042522.
- ↑ Berzinsh, U.; Gustafsson, M.; Hanstorp, D.; Klinkmüller, A.; Ljungblad, U.; Martensson-Pendrill, A.M. (1995). Isotope shift in the electron affinity of chlorine. Phys. Rev. A 51 (1): 231–238. PMID: 9911578. DOI: 10.1103/PhysRevA.51.231.
- ↑ Andersson, K.T.; Sandstrom, J.; Kiyan, I.Y.; Hanstorp, D.; Pegg, D.J. (2000). Measurement of the electron affinity of potassium. Phys. Rev. A 62 (2): 022503. DOI: 10.1103/PhysRevA.62.022503.
- ↑ Petrunin, V.V.; Andersen, H.H.; Balling, P.; Andersen, T. (1996). Structural Properties of the Negative Calcium Ion: Binding Energies and Fine-structure Splitting. Phys. Rev. Lett. 76 (5): 744–47. PMID: 10061539. DOI: 10.1103/PhysRevLett.76.744.
- ↑ 21,0 21,1 21,2 21,3 21,4 21,5 21,6 21,7 21,8 Ning, Chuangang; Lu, Yuzhu (2022). Electron Affinities of Atoms and Structures of Atomic Negative Ions. J. Phys. Chem. Ref. Data 51 (2): 021502. DOI: 10.1063/5.0080243.
- ↑ Tang, R.; Fu, X.; Ning, C. (2018). Accurate electron affinity of Ti and fine structures of its anions. J. Chem. Phys. 149 (13): 134304. PMID: 30292212. DOI: 10.1063/1.5049629.
- ↑ Fu, X.; Luo, Z.; Chen, X.; Li, J.; Ning, C. (2016). Accurate electron affinity of V and fine-structure splittings of V− via slow-electron velocity-map imaging. J. Chem. Phys. 145 (16): 164307. PMID: 27802620. DOI: 10.1063/1.4965928.
- ↑ Chen, X.; Luo, Z.; Li, J.; Ning, C. (2016). Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions. Sci. Rep. 6: 24996. PMID: 27138292. PMC: 4853736. DOI: 10.1038/srep24996.
- ↑ Chen, X.; Ning, C. (2016). Accurate electron affinity of Co and fine-structure splittings of Co− via slow-electron velocity-map imaging. Phys. Rev. A 93 (5): 052508. DOI: 10.1103/PhysRevA.93.052508.
- ↑ 26,0 26,1 26,2 Scheer, M.; Brodie, C.A.; Bilodeau, R.C.; Haugen, H.K. (1998). Laser spectroscopic measurements of binding energies and fine-structure splittings of Co−, Ni−, Rh−, and Pd−.. Phys. Rev. A 58 (3): 2051–62. DOI: 10.1103/PhysRevA.58.2051.
- ↑ 27,0 27,1 Bilodeau, R.C.; Scheer, M.; Haugen, H.K. (1998). Infrared Laser Photodetachment of Transition Metal Negative Ions: Studies on Cr−, Mo−, Cu−, and Ag−. Journal of Physics B 31: 3885–91. DOI: 10.1088/0953-4075/31/17/013.
- ↑ Tang, R.; Fu, X.; Lu, Y.; Ning, C. (2020). Accurate electron affinity of Ga and fine structures of its anions. J. Chem. Phys. 152 (11): 114303. PMID: 32199425. DOI: 10.1063/1.5144962.
- ↑ Bresteau, D.; Babilotte, Ph.; Drag, C.; Blondel, C. (2015). Intra-cavity photodetachment microscopy and the electron affinity of germanium. J. Phys. B: At. Mol. Opt. Phys. 48 (12): 125001. DOI: 10.1088/0953-4075/48/12/125001.
- ↑ Vandevraye, M.; Drag, C.; Blondel, C. (2012). Electron affinity of selenium measured by photodetachment microscopy. Phys. Rev. A 85 (1): 015401. DOI: 10.1103/PhysRevA.85.015401.
- ↑ Frey, P.; Breyer, F.; Hotop, H. (1978). High Resolution Photodetachment from the Rubidium Negative Ion around the Rb(5p1/2) Threshold. Journal of Physics BJ. Phys. B: At. Mol. Phys. Chinese Journal of Chemical Physics 11: L589–94. DOI: 10.1088/0022-3700/11/19/005.
- ↑ Andersen, H.H.; Petrunin, V.V.; Kristensen, P.; Andersen, T. (1997). Structural properties of the negative strontium ion: Binding energy and fine-structure splitting. Phys. Rev. A 55 (4): 3247–49. DOI: 10.1103/PhysRevA.55.3247.
- ↑ Fu, X.; Li, J.; Luo, Z.; Chen, X.; Ning, C. (2017). Precision measurement of electron affinity of Zr and fine structures of its negative ions. Journal of Chemical Physics J. Chem. Phys. The Journal of Chemical Physics 147 (6): 064306. PMID: 28810756. DOI: 10.1063/1.4986547.
- ↑ Luo, Z.; Chen, X.; Li, J.; Ning, C. (2016). Precision measurement of the electron affinity of niobium. Phys. Rev. A 93: 020501(R). DOI: 10.1103/PhysRevA.93.020501.
- ↑ 35,0 35,1 35,2 35,3 35,4 35,5 CRC Handbook of Chemistry and Physics 92nd Edn. (2011–2012); W. M. Haynes. Boca Raton, FL: CRC Press. "Section 10, Atomic, Molecular, and Optical Physics; Electron Affinities".
- ↑ Walter, C.W.; Gibson, N.D.; Carman, D.J.; Li, Y.-G.; Matyas, D.J. (2010). Electron affinity of indium and the fine structure of In− measured using infrared photodetachment threshold spectroscopy. Phys. Rev. A 82 (3): 032507. DOI: 10.1103/PhysRevA.82.032507.
- ↑ Vandevraye, M.; Drag, C.; Blondel, C. (2013). Electron affinity of tin measured by photodetachment microscopy. Journal of Physics B: Atomic, Molecular and Optical Physics 46 (12): 125002. DOI: 10.1088/0953-4075/46/12/125002.
- ↑ Scheer, M.; Haugen, H.K.; Beck, D.R. (1997). Single- and Multiphoton Infrared Laser Spectroscopy of Sb−: A Case Study. Phys. Rev. Lett. 79 (21): 4104–7. DOI: 10.1103/PhysRevLett.79.4104.
- ↑ Haeffler, G.; Klinkmüller, A.E.; Rangell, J.; Berzinsh, U.; Hanstorp, D. (1996). The electron affinity of tellurium. Z. Phys. D 38 (3): 211. DOI: 10.1007/s004600050085.
- ↑ Peláez, R.J.; Blondel, C.; Delsart, C.; Drag, C. (2009). Pulsed photodetachment microscopy and the electron affinity of iodine. J. Phys. B 42 (12): 125001. DOI: 10.1088/0953-4075/42/12/125001.
- ↑ Rothe, S.; Sundberg, J.; Welander, J.; Chrysalidis, K.; Goodacre, T. (2017). D., Fedosseev V., ... & Kron T. (2017). Laser photodetachment of radioactive 128I−.. J. Phys. G: Nucl. Part. Phys. 44: 104003. DOI: 10.1088/1361-6471/aa80aa.
- ↑ Navarro Navarrete, José E.; Nichols, Miranda; Ringvall-Moberg, Annie; Welander, Jakob; Lu, Di; Leimbach, David; Kristiansson, Moa K.; Eklund, Gustav; Raveesh, Meena; Chulkov, Ruslan; Zhaunerchyk, Vitali; Hanstorp, Dag (21 februari 2024). High-resolution measurement of the electron affinity of cesium. Physical Review A 109 (2). ISSN: 2469-9926. DOI: 10.1103/PhysRevA.109.022812.
- ↑ Petrunin, V.V.; Volstad, J.D.; Balling, P.; Kristensen, K.; Andersen, T. (1995). Resonant Ionization Spectroscopy of Ba−: Metastable and Stable Ions. Phys. Rev. Lett. 75 (10): 1911–14. PMID: 10059160. DOI: 10.1103/PhysRevLett.75.1911.
- ↑ Blondel, C. (2020). Comment on "Measurement of the electron affinity of the lanthanum atom". Phys. Rev. A 101 (1): 016501. DOI: 10.1103/PhysRevA.101.016501.
- ↑ Fu, X.-X.; Tang, R.-L.; Lu, Y.-Z.; Ning, C.-G. (2020). Accurate electron affinity of atomic cerium and excited states of its anion. Chin. Phys. B 29 (7): 073201. DOI: 10.1088/1674-1056/ab90e9.
- ↑ 46,0 46,1 46,2 Fu, X.; Lu, Y.; Tang, R.; Ning, C. (2020). Electron affinity measurements of lanthanide atoms: Pr, Nd, and Tb. Phys. Rev. A 101 (2): 022502. DOI: 10.1103/PhysRevA.101.022502.
- ↑ 47,0 47,1 47,2 Felfli, Z.; Msezane, A.; Sokolovski, D. (2009). Resonances in low-energy electron elastic cross sections for lanthanide atoms. Phys. Rev. A 79 (1): 012714. DOI: 10.1103/PhysRevA.79.012714.
- ↑ 48,0 48,1 Cheng, S.B.; Castleman, A. W. Jr (2015). Direct experimental observation of weakly-bound character of the attached electron in europium anion. Sci. Rep. 5: 12414. PMID: 26198741. PMC: 4510523. DOI: 10.1038/srep12414.
- ↑ Nadeau, M. J.; Garwan, M. A.; Zhao, X. L.; Litherland, A. E. (1997). A negative ion survey; towards the completion of the periodic table of the negative ions. Nuclear Instruments and Methods in Physics Research B 123 (1–4): 521–526. DOI: 10.1016/S0168-583X(96)00749-5.
- ↑ Davis, V.T.; Thompson, J.S. (2001). Measurement of the electron affinity of thulium. Phys. Rev. A 65 (1): 010501. DOI: 10.1103/PhysRevA.65.010501.
- ↑ Fu, X.X.; Tang, R.L.; Lu, Y.Z.; Ning, C.G. (2019). Measurement of electron affinity of atomic lutetium via the cryo-SEVI Method. Chinese Journal of Chemical Physics 32 (2): 187. DOI: 10.1063/1674-0068/cjcp1812293.
- ↑ Tang, R.; Chen, X.; Fu, X.; Wang, H.; Ning, C. (2018). Electron affinity of the hafnium atom.. Phys. Rev. A 98 (020501(R)). DOI: 10.1103/PhysRevA.98.020501.
- ↑ Chen, X.L.; Ning, C.G. (2017). Observation of Rhenium Anion and Electron Affinity of Re.. J. Phys. Chem. Lett. 8 (12): 2735–2738. PMID: 28581753. DOI: 10.1021/acs.jpclett.7b01079.
- ↑ Lu Y., Zhao J., Tang R., Fu X. & Ning C. (2020). "Measurement of electron affinity of iridium atom and photoelectron angular distributions of iridium anion". J. Chem. Phys. 152, 034302 doi: 10.1063/1.5134535
- ↑ Bilodeau, R.C.; Scheer, M.; Haugen, H.K.; Brooks, R.L. (1999). Near-threshold Laser Spectroscopy of Iridium and Platinum Negative Ions: Electron Affinities and the Threshold Law. Phys. Rev. A 61 (1): 012505. DOI: 10.1103/PhysRevA.61.012505.
- ↑ Andersen, T.; Haugen, H.K.; Hotop, H. (1999). Binding Energies in Atomic Negative Ions: III. J. Phys. Chem. Ref. Data 28 (6): 1511. DOI: 10.1063/1.556047.
- ↑ Walter, C.W.; Gibson, N.D.; Spielman, S.E. (2020). Electron affinity of thallium measured with threshold spectroscopy. Phys. Rev. A 101 (5): 052511. DOI: 10.1103/PhysRevA.101.052511.
- ↑ Bresteau, D.; Drag, C.; Blondel, C. (2019). Electron affinity of lead. J. Phys. B: At. Mol. Opt. Phys. 52 (6): 065001. DOI: 10.1088/1361-6455/aaf685.
- ↑ Bilodeau, R.C.; Haugen, H.K. (2001). Electron affinity of Bi using infrared laser photodetachment threshold spectroscopy. Phys. Rev. A 64 (2): 024501. DOI: 10.1103/PhysRevA.64.024501.
- ↑ Junqin, Li; Zilong, Zhao; Martin, Andersson; Xuemei, Zhang; Chongyang, Chen (2012). Theoretical study for the electron affinities of negative ions with the MCDHF method. J. Phys. B: At. Mol. Opt. Phys. 45 (16): 165004. DOI: 10.1088/0953-4075/45/16/165004.
- ↑ Leimbach, D. (2020). The electron affinity of astatine. Nat. Commun. 11 (1): 3824. PMID: 32733029. PMC: 7393155. DOI: 10.1038/s41467-020-17599-2.
- ↑ 62,0 62,1 Landau, A.; Eliav, E.; Ishikawa, Y.; Kaldor, U. (2001). Benchmark calculations of electron affinities of the alkali atoms sodium to eka-francium (element 119). J. Chem. Phys. 115 (6): 2389. DOI: 10.1063/1.1386413.
- ↑ Andersen, T. (2004). Atomic negative ions: Structure, dynamics and collisions. Physics Reports 394 (4–5): 157–313. DOI: 10.1016/j.physrep.2004.01.001.
- ↑ Tang, R.; Si, R.; Fei, Z.; Fu, X.; Lu, Y.; Brage, T.; Liu, H.; Chen, C.; Ning, C. (2019). Candidate for Laser Cooling of a Negative Ion: High-Resolution Photoelectron Imaging of Th−. Phys. Rev. Lett. 123: 203002. DOI: 10.1103/PhysRevLett.123.203002.
- ↑ 65,00 65,01 65,02 65,03 65,04 65,05 65,06 65,07 65,08 65,09 65,10 65,11 Guo, Y.; Whitehead, M.A. (1989). Electron affinities of alkaline-earth element calculated with the local-spin-density-functional theory.. Physical Review A 40 (1): 28–34. PMID: 9901864. DOI: 10.1103/PhysRevA.40.28.
- ↑ Tang, R.; Lu, Y.; Liu, H.; Ning, C. (2021). Electron affinity of uranium and bound states of opposite parity in its anion. Phys. Rev. A 103: L050801. DOI: 10.1103/PhysRevA.103.L050801.
- ↑ Eliav, Ephraim; Fritzsche, Stephan; Kaldor, Uzi (2015). Electronic structure theory of the superheavy elements. Nucl. Phys. A 944: 518–550. DOI: 10.1016/j.nuclphysa.2015.06.017.
- ↑ 68,0 68,1 68,2 68,3 Fully relativistic ab initio studies of superheavy elements. Johannes Gutenberg University Mainz.
- ↑ Advances in Quantum Chemistry ISBN 978-0-12-823546-1
- ↑ Borschevsky, A.; Pershina, V.; Eliav, E.; Kaldor, U. (2013). Ab initio predictions of atomic properties of element 120 and its lighter group-2 homologues. Phys. Rev. A 87 (2): 022502–1–8. DOI: 10.1103/PhysRevA.87.022502.